A priori error estimator of the generalized-α method for structural dynamics

被引:11
作者
Chung, J
Cho, EH
Choi, K
机构
[1] Hanyang Univ, Dept Mech Engn, Ansan 425791, Kyunggi Do, South Korea
[2] Inha Univ, Dept Aerosp Engn, Nam Gu, Inchon 402751, South Korea
关键词
error estimator; automatic time-stepping algorithm; time integration; structural dynamics;
D O I
10.1002/nme.688
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An a priori error estimator for the generalized-alpha time-integration method is developed to solve structural dynamic problems efficiently. Since the proposed error estimator is computed with only information in the previous and current time-steps, the time-step size can be adaptively selected without a feedback process, which is required in most conventional a posteriori error estimators. This paper shows that the automatic time-stepping algorithm using the a priori estimator performs more efficient time integration, when compared to algorithms using an a posteriori estimator. In particular, the proposed error estimator can be usefully applied to large-scale structural dynamic problems, because it is helpful to save computation time. To verify efficiency of the algorithm, several examples are numerically investigated. Copyright (C) 2003 John Wiley Sons, Ltd.
引用
收藏
页码:537 / 554
页数:18
相关论文
共 50 条
[21]   The accuracy of the generalized-α method in the time integration of non-linear single- and two-DOF forced systems [J].
G. Baldo ;
A. Bonelli ;
O. Bursi ;
S. Erlicher .
Computational Mechanics, 2006, 38 :15-31
[22]   A high-order generalized Finite Element Method for multiscale structural dynamics and wave propagation [J].
Sanchez-Rivadeneira, A. G. ;
Duarte, C. A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 384
[23]   A TIME INTEGRATION ALGORITHM FOR STRUCTURAL DYNAMICS WITH IMPROVED NUMERICAL DISSIPATION - THE GENERALIZED-ALPHA METHOD [J].
CHUNG, J ;
HULBERT, GM .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1993, 60 (02) :371-375
[24]   Error estimation for the HHT method in non-linear solid dynamics [J].
Lacoma, Luis M. ;
Romero, Ignacio .
COMPUTERS & STRUCTURES, 2007, 85 (3-4) :158-169
[25]   Local and global error estimations in linear structural dynamics [J].
Schleupen, A ;
Ramm, E .
COMPUTERS & STRUCTURES, 2000, 76 (06) :741-756
[26]   A NODE-BASED ERROR ESTIMATOR FOR THE ELEMENT-FREE GALERKIN (EFG) METHOD [J].
He, Yiqian ;
Yang, Haitian ;
Deeks, Andrew J. .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2014, 11 (04)
[27]   Error Estimation of Polynomial Chaos Approximations in Transient Structural Dynamics [J].
Dao, T. D. ;
Serra, Q. ;
Berger, S. ;
Florentin, E. .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2020, 17 (10)
[28]   An improved computational method in structural dynamics [J].
Moradipour, Parviz ;
Noorzaei, Jamaloddin ;
Jaafar, Mohd Saleh ;
Aziz, Farah Nora Aznieta Abdul .
JOURNAL OF ENGINEERING DESIGN AND TECHNOLOGY, 2013, 11 (03) :288-315
[29]   HOMOTOPY SOLUTION OF THE INVERSE GENERALIZED EIGENVALUE PROBLEMS IN STRUCTURAL DYNAMICS [J].
李书 ;
王波 ;
胡继忠 .
Applied Mathematics and Mechanics(English Edition), 2004, (05) :580-586
[30]   Homotopy solution of the inverse generalized eigenvalue problems in structural dynamics [J].
Li Shu ;
Wang Bo ;
Hu Ji-zhong .
Applied Mathematics and Mechanics, 2004, 25 (5) :580-586