Classifying complete C-subalgebras of C[[t]]

被引:0
|
作者
Hamilton, Eloise [1 ]
机构
[1] Univ Oxford, Oxford, England
基金
澳大利亚研究理事会;
关键词
MODULAR COMPACTIFICATIONS; SPACE; SEMIGROUP;
D O I
10.1007/s00229-019-01162-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We address the problem of classifying complete C-subalgebras of C[[t]].A discrete invariant for this classification problem is the semigroup of orders of the elements in a given C-subalgebra.Hence we can define the space R-Gamma of all C-subalgebras of C[[t]] with semigroup Gamma. After relating this space to the Zariski moduli space of curve singularities and to a moduli space of global singular curves, we prove that R-Gamma is an affine variety by describing its defining equations in an ambient affine space in terms of an explicit algorithm. Moreover, we identify certain types of semigroups Gamma for which R-Gamma is always an affine space, and for general Gamma we describe the stratification of R-Gamma by embedding dimension.We also describe the natural map from R(Gamma)to the Zariski moduli space in some special cases. Explicit examples are provided throughout.
引用
收藏
页码:437 / 462
页数:26
相关论文
共 50 条
  • [31] Cebysev Subspaces of C*-Algebras - a Survey
    Namboodiri, M. N. N.
    Pramod, S.
    Vijayarajan, A. K.
    OPERATOR ALGEBRAS AND MATHEMATICAL PHYSICS, 2015, 247 : 101 - 121
  • [32] C*-algebras generated by cancellative semigroups
    Grigoryan, S. A.
    Salakhutdinov, A. F.
    SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (01) : 12 - 19
  • [33] On the c0-extension property
    Correa, Claudia
    STUDIA MATHEMATICA, 2021, 256 (03) : 345 - 359
  • [34] On KSGNS representations on Krein C*-modules
    Heo, Jaeseong
    Hong, Jang Pyo
    Ji, Un Cig
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
  • [35] ON DERIVATIONS AND ELEMENTARY OPERATORS ON C*-ALGEBRAS
    Gogic, Ilja
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2013, 56 (02) : 515 - 534
  • [36] Almost clean elements in C(X)
    Mohamadian, R.
    QUAESTIONES MATHEMATICAE, 2023, 46 (09) : 1937 - 1953
  • [37] C-spaces and simplicial complexes
    V. V. Fedorchuk
    Siberian Mathematical Journal, 2009, 50 : 741 - 747
  • [38] Semigroup C*-algebras and amenability of semigroups
    Li, Xin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (10) : 4302 - 4340
  • [39] Hilbert C*-modules and amenable actions
    Douglas, Ronald G.
    Nowak, Piotr W.
    STUDIA MATHEMATICA, 2010, 199 (02) : 185 - 197
  • [40] Why Diorganyl Zinc Lewis Acidity Dramatically Increases with Narrowing C-Zn-C Bond Angle
    Mirabi, Bijan
    Poh, Wei Church
    Armstrong, David
    Lough, Alan J.
    Fekl, Ulrich
    INORGANIC CHEMISTRY, 2020, 59 (05) : 2621 - 2625