A novel method for new solutions of time fractional (1+2)-dimensional nonlinear Schrodinger equation involving dual-power law nonlinearity

被引:8
作者
Ray, S. Saha [1 ]
机构
[1] Natl Inst Technol, Dept Math, Rourkela 769008, India
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2019年 / 33卷 / 24期
关键词
Modified Riemann-Liouville fractional derivative; dual-power law nonlinearity; new Jacobi elliptic function expansion method; time fractional (1+2)-dimensional nonlinear Schrodinger equation; ELLIPTIC FUNCTION EXPANSION; SOLITARY WAVE SOLUTIONS; PERIODIC-SOLUTIONS; EVOLUTION; SOLITONS; BRIGHT;
D O I
10.1142/S0217979219502801
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, a novel method has been used to solve time fractional (1+ 2)-dimensional nonlinear Schrodinger equation with dual-power law nonlinearity. Using the newly-proposed Jacobi elliptic function expansion method, new double periodic, bright and soliton solutions of the aforesaid equation have been obtained. The results show that the proposed method is a convenient, efficient and straightforward technique to devise new soliton solutions of the presently-mentioned equation.
引用
收藏
页数:12
相关论文
共 29 条
[1]  
Agrawal G., 2010, Nonlinear Fiber Optics, Vfourth
[2]  
[Anonymous], 2000, NONLINEAR SCHRODINGE
[3]   Exact bright-dark solitary wave solutions of the higher-order cubic-quintic nonlinear Schrodinger equation and its stability [J].
Arshad, M. ;
Seadawy, Aly R. ;
Lu, Dianchen .
OPTIK, 2017, 138 :40-49
[4]   Exact solutions of shallow water wave equations by using the (G′/G)-expansion method [J].
Bekir, Ahmet ;
Aksoy, Esin .
WAVES IN RANDOM AND COMPLEX MEDIA, 2012, 22 (03) :317-331
[5]   Impact of dispersion and non-Kerr nonlinearity on the modulational instability of the higher-order nonlinear Schrodinger equation [J].
Choudhuri, Amitava ;
Porsezian, K. .
PHYSICAL REVIEW A, 2012, 85 (03)
[6]  
Debnath L., 2005, NONLINEAR PARTIAL DI
[7]   A note on the homogeneous balance method [J].
Fan, EG ;
Zhang, HQ .
PHYSICS LETTERS A, 1998, 246 (05) :403-406
[8]   New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations [J].
Fu, ZT ;
Liu, SK ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 290 (1-2) :72-76
[9]   Tanh-type and sech-type solitons for some space-time fractional PDE models [J].
Guner, Ozkan ;
Bekir, Ahmet ;
Korkmaz, Alper .
EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (02)
[10]   Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus [J].
He, Ji-Huan ;
Elagan, S. K. ;
Li, Z. B. .
PHYSICS LETTERS A, 2012, 376 (04) :257-259