Elliptic boundary value problems for Bessel operators, with applications to anti-de Sitter spacetimes

被引:3
作者
Gannot, Oran [1 ]
机构
[1] Northwestern Univ, Dept Math, Lunt Hall, Evanston, IL 60208 USA
关键词
MASSIVE WAVE-EQUATION; QUASI-NORMAL MODES; GAUGED EXTENDED SUPERGRAVITY; BLACK-HOLES; SPACES; ADS; CURVATURE; STABILITY; RESOLVENT;
D O I
10.1016/j.crma.2018.08.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers boundary value problems for a class of singular elliptic operators that appear naturally in the study of asymptotically anti-de Sitter (aAdS) spacetimes. These problems involve a singular Bessel operator acting in the normal direction. After formulating a Lopatinskii condition, elliptic estimates are established for functions supported near the boundary. The Fredholm property follows from additional hypotheses in the interior. This paper provides a rigorous framework for mode analysis on aAdS spacetimes for a wide range of boundary conditions considered in the physics literature. Completeness of eigenfunctions for some Bessel operator pencils is shown. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:988 / 1029
页数:42
相关论文
共 54 条
[11]   Is AdS stable? [J].
Bizon, Piotr .
GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (05) :1-14
[12]   Weakly Turbulent Instability of Anti-de Sitter Spacetime [J].
Bizon, Piotr ;
Rostworowski, Andrzej .
PHYSICAL REVIEW LETTERS, 2011, 107 (03)
[13]   POSITIVE ENERGY IN ANTI-DE SITTER BACKGROUNDS AND GAUGED EXTENDED SUPERGRAVITY [J].
BREITENLOHNER, P ;
FREEDMAN, DZ .
PHYSICS LETTERS B, 1982, 115 (03) :197-201
[14]   STABILITY IN GAUGED EXTENDED SUPERGRAVITY [J].
BREITENLOHNER, P ;
FREEDMAN, DZ .
ANNALS OF PHYSICS, 1982, 144 (02) :249-281
[16]   Conserved quantities and dual turbulent cascades in anti-de Sitter spacetime [J].
Buchel, Alex ;
Green, Stephen R. ;
Lehner, Luis ;
Liebling, Steven L. .
PHYSICAL REVIEW D, 2015, 91 (06)
[17]   Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS [J].
Cardoso, Vitor ;
Dias, Oscar J. C. ;
Hartnett, Gavin S. ;
Lehner, Luis ;
Santos, Jorge E. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (04)
[18]   FRACTIONAL CONFORMAL LAPLACIANS AND FRACTIONAL YAMABE PROBLEMS [J].
del Mar Gonzalez, Maria ;
Qing, Jie .
ANALYSIS & PDE, 2013, 6 (07) :1535-1576
[19]   Boundary conditions for Kerr-AdS perturbations [J].
Dias, Oscar J. C. ;
Santos, Jorge E. .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (10)
[20]   On the nonlinear stability of asymptotically anti-de Sitter solutions [J].
Dias, Oscar J. C. ;
Horowitz, Gary T. ;
Marolf, Don ;
Santos, Jorge E. .
CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (23)