Wave runup prediction using M5′ model tree algorithm

被引:43
作者
Abolfathi, S. [1 ]
Yeganeh-Bakhtiary, A. [2 ,3 ]
Hamze-Ziabari, S. M. [2 ]
Borzooei, S. [4 ]
机构
[1] Coventry Univ, Flow Measurement & Fluid Mech Res Ctr, Coventry CV1 5FB, W Midlands, England
[2] Iran Univ Sci & Technol, Sch Civil Engn, Tehran 16884, Iran
[3] Inst Teknol Brunei, Fac Engn, Civil Engn Program, Gadang, Brunei
[4] Politecn Torino, DIATI, Cso Abruzzi 24, I-10129 Turin, Italy
关键词
Wave runup; Model tree; M5 ' algorithm; Nearshore hydrodynamics; NEURAL-NETWORKS; SLOPES; SMOOTH;
D O I
10.1016/j.oceaneng.2015.12.016
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In recent years, soft computing schemes have received increasing attention for solving coastal engineering problems and knowledge extraction from the existing data. In this paper, capabilities of M5' Decision Tree algorithm are implemented for predicting the wave runup using existing laboratory data. The decision models were established using the surf similarity parameter (xi), slope angle (cot alpha), beach permeability factor (S-p), relative wave height (H/h), wave spectrum (S-s) and wave momentum flux (m). 451 laboratory data of the wave runup were utilized for developing wave runup prediction models. The performance of developed models is evaluated with statistical measures. The results demonstrate the strength of M5' model tree algorithm in predicting the wave runup with high precision. Good agreement exists between the proposed runup formulae and existing empirical relations. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:76 / 81
页数:6
相关论文
共 18 条
  • [1] Ahrens J. P., 1981, 8117 CETA US ARM COR, P57
  • [2] [Anonymous], 2002, HYDRODYNAMIC ANAL DE
  • [3] [Anonymous], 1997, P 9 EUR C MACH LEARN
  • [4] [Anonymous], 1957, P 6 INT COASTAL ENG
  • [5] Application of neuro-fuzzy approach in prediction of runup in swash zone
    Bakhtyar, R.
    Bakhtiary, A. Yeganeh
    Ghaheri, A.
    [J]. APPLIED OCEAN RESEARCH, 2008, 30 (01) : 17 - 27
  • [6] Battjes J. A., 1974, P 14 INT C COAST ENG, V1, P466
  • [7] Neural networks and M5 model trees in modelling water level-discharge relationship
    Bhattacharya, B
    Solomatine, DP
    [J]. NEUROCOMPUTING, 2005, 63 : 381 - 396
  • [8] Granthem K. N., 1953, U CALIFORNIA SERIES, V3
  • [9] Estimation of wave run-up on smooth, impermeable slopes using the wave momentum flux parameter
    Hughes, SA
    [J]. COASTAL ENGINEERING, 2004, 51 (11-12) : 1085 - 1104
  • [10] Hunt I.A., 1959, Journal of the Waterways and Harbors Division, V85, P123, DOI [10.1061/JWHEAU.0000129, DOI 10.1061/JWHEAU.0000129]