HOMOGENIZATION OF LEVY-TYPE OPERATORS WITH OSCILLATING COEFFICIENTS

被引:12
|
作者
Kassmann, M. [1 ]
Piatnitski, A. [2 ]
Zhizhina, E. [3 ]
机构
[1] Univ Bielefeld, Fak Math, D-335001 Bielefeld, Germany
[2] Arctic Univ Norway, Campus Narvik,POB 385, N-8505 Narvik, Norway
[3] Inst Informat Transmiss Problems RAS, Moscow 127051, Russia
关键词
homogenization; Levy-type operator; jump process; INTEGRODIFFERENTIAL EQUATIONS; PERIODIC HOMOGENIZATION; DIFFUSION; BEHAVIOR;
D O I
10.1137/18M1200038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with homogenization of Levy-type operators with rapidly oscillating coefficients. We consider cases of periodic and random statistically homogeneous micro-structures and show that in the limit we obtain a Levy-operator. In the periodic case we study both symmetric and non-symmetric kernels whereas in the random case we only investigate symmetric kernels. We also address a nonlinear version of this homogenization problem.
引用
收藏
页码:3641 / 3665
页数:25
相关论文
共 50 条
  • [1] Nonsymmetric Levy-type operators
    Minecki, Jakub
    Szczypkowski, Karol
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (06) : 2234 - 2286
  • [2] PERIODIC HOMOGENIZATION OF NONSYMMETRIC LEVY-TYPE PROCESSES
    Chen, Xin
    Chen, Zhen-Qing
    Kumagai, Takashi
    Wang, Jian
    ANNALS OF PROBABILITY, 2021, 49 (06): : 2874 - 2921
  • [3] Solutions of martingale problems for Levy-type operators with discontinuous coefficients and related SDEs
    Imkeller, Peter
    Willrich, Niklas
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (03) : 703 - 734
  • [4] Periodic homogenization of a Levy-type process with small jumps
    Sandric, Nikola
    Valentic, Ivana
    Wang, Jian
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (01) : 771 - 803
  • [5] THE DIRICHLET PROBLEM FOR NONLOCAL LEVY-TYPE OPERATORS
    Rutkowski, Artur
    PUBLICACIONS MATEMATIQUES, 2018, 62 (01) : 213 - 251
  • [6] On a homogenization method for differential operators with oscillating coefficients
    S. Yu. Dobrokhotov
    V. E. Nazaikinskii
    B. Tirozzi
    Doklady Mathematics, 2015, 91 : 227 - 231
  • [7] On a homogenization method for differential operators with oscillating coefficients
    Dobrokhotov, S. Yu.
    Nazaikinskii, V. E.
    Tirozzi, B.
    DOKLADY MATHEMATICS, 2015, 91 (02) : 227 - 231
  • [8] Heat kernels of non-symmetric Levy-type operators
    Grzywny, Tomasz
    Szczypkowski, Karol
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (10) : 6004 - 6064
  • [9] Existence of (Markovian) solutions to martingale problems associated with Levy-type operators
    Kuehn, Franziska
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25
  • [10] ERGODICITY OF LEVY-TYPE PROCESSES
    Sandric, Nikola
    ESAIM-PROBABILITY AND STATISTICS, 2016, 20 : 154 - 177