Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach

被引:211
作者
Rockne, R. [1 ]
Rockhill, J. K. [2 ]
Mrugala, M. [3 ]
Spence, A. M. [3 ]
Kalet, I. [2 ]
Hendrickson, K. [2 ]
Lai, A. [5 ]
Cloughesy, T. [5 ]
Alvord, E. C., Jr. [1 ]
Swanson, K. R. [1 ,4 ]
机构
[1] Univ Washington, Dept Pathol, Seattle, WA 98195 USA
[2] Univ Washington, Dept Radiat Oncol, Seattle, WA 98195 USA
[3] Univ Washington, Dept Neurol, Seattle, WA 98195 USA
[4] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[5] Univ Calif Los Angeles, Dept Neurol, Los Angeles, CA 90095 USA
关键词
LINEAR-QUADRATIC MODEL; MALIGNANT GLIOMA INVASION; RADIATION TREATMENT; BREAST-CANCER; BRAIN-TUMOR; DATA SETS; VALIDATION; GROWTH; PROGRESSION; RESECTION;
D O I
10.1088/0031-9155/55/12/001
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Glioblastoma multiforme (GBM) is the most malignant form of primary brain tumors known as gliomas. They proliferate and invade extensively and yield short life expectancies despite aggressive treatment. Response to treatment is usually measured in terms of the survival of groups of patients treated similarly, but this statistical approach misses the subgroups that may have responded to or may have been injured by treatment. Such statistics offer scant reassurance to individual patients who have suffered through these treatments. Furthermore, current imaging-based treatment response metrics in individual patients ignore patient-specific differences in tumor growth kinetics, which have been shown to vary widely across patients even within the same histological diagnosis and, unfortunately, these metrics have shown only minimal success in predicting patient outcome. We consider nine newly diagnosed GBM patients receiving diagnostic biopsy followed by standard-of-care external beam radiation therapy (XRT). We present and apply a patient-specific, biologically based mathematical model for glioma growth that quantifies response to XRT in individual patients in vivo. The mathematical model uses net rates of proliferation and migration of malignant tumor cells to characterize the tumor's growth and invasion along with the linear-quadratic model for the response to radiation therapy. Using only routinely available pre-treatment MRIs to inform the patient-specific bio-mathematical model simulations, we find that radiation response in these patients, quantified by both clinical and model-generated measures, could have been predicted prior to treatment with high accuracy. Specifically, we find that the net proliferation rate is correlated with the radiation response parameter (r = 0.89, p = 0.0007), resulting in a predictive relationship that is tested with a leave-one-out cross-validation technique. This relationship predicts the tumor size post-therapy to within inter-observer tumor volume uncertainty. The results of this study suggest that a mathematical model can create a virtual in silico tumor with the same growth kinetics as a particular patient and can not only predict treatment response in individual patients in vivo but also provide a basis for evaluation of response in each patient to any given therapy.
引用
收藏
页码:3271 / 3285
页数:15
相关论文
共 50 条
[41]  
SWANSON KR, 2002, NEURO-ONCOLOGY, V4, P340, DOI DOI 10.1093/NEUONC/4.4.308
[42]  
SWANSON KR, 1991, MATH MODELING GROWTH
[43]  
SWANSON KR, 2002, SIAM LIF SCI IM SCI
[44]   Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide [J].
Taal, Walter ;
Brandsma, Dieta ;
de Bruin, Hein G. ;
Bromberg, Jacoline E. ;
Swaak-Kragten, Annemarie T. ;
Smitt, Peter A. E. Sillevis ;
van Es, Corine A. ;
van den Bent, Martin J. .
CANCER, 2008, 113 (02) :405-410
[45]   RECIST revisited: A review of validation studies on tumour assessment [J].
Therasse, P. ;
Eisenhauer, E. A. ;
Verweij, J. .
EUROPEAN JOURNAL OF CANCER, 2006, 42 (08) :1031-1039
[46]   Predicting outcome of patients with high-grade gliomas after radiotherapy using quantitative analysis of T1-weighted magnetic resonance imaging [J].
Tsien, Christina ;
Gomez-Hassan, Diana ;
Chenevert, Thomas L. ;
Lee, Julia ;
Lawrence, Theodore ;
Ten Haken, Randall K. ;
Junck, Larry R. ;
Ross, Brian ;
Cao, Yue .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 67 (05) :1476-1483
[47]   Prognostic Significance of Growth Kinetics in Newly Diagnosed Glioblastomas Revealed by Combining Serial Imaging with a Novel Biomathematical Model [J].
Wang, Christina H. ;
Rockhill, Jason K. ;
Mrugala, Maciej ;
Peacock, Danielle L. ;
Lai, Albert ;
Jusenius, Katy ;
Wardlaw, Joanna M. ;
Cloughesy, Timothy ;
Spence, Alexander M. ;
Rockne, Russ ;
Alvord, Ellsworth C., Jr. ;
Swanson, Kristin R. .
CANCER RESEARCH, 2009, 69 (23) :9133-9140
[48]   Pre-treatment proliferation and the outcome of conventional and accelerated radiotherapy [J].
Wilson, GD ;
Saunders, MI ;
Dische, S ;
Daley, FM ;
Buffa, FM ;
Richman, PI ;
Bentzen, SM .
EUROPEAN JOURNAL OF CANCER, 2006, 42 (03) :363-371
[49]   A mathematical model of glioma growth: The effect of extent of surgical resection [J].
Woodward, DE ;
Cook, J ;
Tracqui, P ;
Cruywagen, GC ;
Murray, JD ;
Alvord, EC .
CELL PROLIFERATION, 1996, 29 (06) :269-288
[50]   RADIOSENSITIVITY, RECOVERY AND DOSE-RATE EFFECT IN 3 HUMAN GLIOMA CELL-LINES [J].
YANG, X ;
DARLING, JL ;
MCMILLAN, TJ ;
PEACOCK, JH ;
STEEL, GG .
RADIOTHERAPY AND ONCOLOGY, 1990, 19 (01) :49-56