Multiple solutions for some functional boundary value problems

被引:8
作者
Stanek, S [1 ]
机构
[1] Palacky Univ, Fac Sci, Dept Math, Olomouc 77900, Czech Republic
关键词
functional differential equation; functional boundary conditions; Caratheodory solution; existence; multiplicity; Leray-Schauder degree; Borsuk theorem; Bihari lemma;
D O I
10.1016/S0362-546X(97)00484-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:427 / 438
页数:12
相关论文
共 10 条
[1]  
[Anonymous], 1976, INTEGRAL INEQUALITIE
[2]  
[Anonymous], ARCH MATH
[3]  
[Anonymous], 1956, ACTA MATH ACAD SCI H
[4]  
BRYKALOV SA, 1991, DIFF URAVN, V27, P2027
[5]  
BRYKALOV SA, 1993, P GEORGIAN ACAD SCI, V1, P273
[6]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[7]   A MULTIPLICITY RESULT FOR PERIODIC-SOLUTIONS OF FORCED NONLINEAR 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
FABRY, C ;
MAWHIN, J ;
NKASHAMA, MN .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :173-180
[8]   EXISTENCE OF MULTIPLE SOLUTIONS FOR SOME NONLINEAR BOUNDARY-VALUE-PROBLEMS [J].
NKASHAMA, MN ;
SANTANILLA, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 84 (01) :148-164
[9]  
Seda V., 1995, DIFFERENTIAL INTEGRA, V8, P19
[10]  
STANEK S, IN PRESS MATH NOCHR