Infinitely many radial solutions of a variational problem related to dispersion-managed optical fibers

被引:9
作者
Kunze, M [1 ]
机构
[1] Univ Essen Gesamthsch, Fachbereich Math 6, D-45117 Essen, Germany
关键词
nonlocal variational problem; compactness by symmetry; infinitely many solutions; nonlinear optics; dispersion managed solitons;
D O I
10.1090/S0002-9939-02-06780-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a non-local variational problem whose critical points are related to bound states in certain optical fibers. The functional is given by phi(u) = 1/2\u\(2)(H1) - integral(0)(1) integral(R2) \e(itDelta)u\(4) dxdt, and relying on the regularizing properties of the solution e(itDelta) to the free Schrodinger equation, it will be shown that phi has in finitely many critical points.
引用
收藏
页码:2181 / 2188
页数:8
相关论文
共 17 条
[1]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[2]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P347
[3]  
BOURGAIN J, 1999, C PUBLICATIONS AM MA, V46
[4]  
Cazenave T., 1996, INTRO NONLINEAR SCHR, V3rd
[5]   8X10 GB/S TRANSMISSION THROUGH 280-KM OF DISPERSION-MANAGED FIBER [J].
CHRAPLYVY, AR ;
GNAUCK, AH ;
TKACH, RW ;
DEROSIER, RM .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1993, 5 (10) :1233-1235
[6]   Breathing solitons in optical fiber links [J].
Gabitov, I ;
Turitsyn, SK .
JETP LETTERS, 1996, 63 (10) :861-866
[7]   Averaged pulse dynamics in a cascaded transmission system with passive dispersion compensation [J].
Gabitov, IR ;
Turitsyn, SK .
OPTICS LETTERS, 1996, 21 (05) :327-329
[8]  
JACKSON R, UNPUB CRITICAL POINT
[9]   Bifurcation from the essential spectrum without sign condition on the nonlinearity [J].
Kunze, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :927-943
[10]   PRINCIPLE OF SYMMETRIC CRITICALITY [J].
PALAIS, RS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 69 (01) :19-30