Fixed points of commuting holomorphic mappings other than the Wolff point

被引:17
作者
Bracci, F [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
fixed points; Wolff point; commuting mappings;
D O I
10.1090/S0002-9947-03-03170-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Delta be the unit disc of C and let f, g is an element of Hol(Delta, Delta) be such that f o g = g o f. For A > 1, let Fix(A)(f) := {p is an element of Delta \ lim(r-->1) f(rp) = p, lim(r-->1) \ f'(rp) \ less than or equal to A}. We study the behavior of g on Fix(A)(f). In particular, we prove that g(Fix(A)(f)) subset of or equal to Fix(A) (f). As a consequence, besides conditions for Fix(A)(f) boolean AND Fix(A)(g) not equal empty set, we prove a conjecture of C. Cowen in case f and g are univalent mappings.
引用
收藏
页码:2569 / 2584
页数:16
相关论文
共 14 条
[1]  
Abate Marco, 1989, Research and Lecture Notes in Mathematics. Complex Analysis and Geometry
[2]  
[Anonymous], 1969, TRANSL MATH MONOGRAP
[3]   COMMUTING ANALYTIC-FUNCTIONS WITHOUT FIXED-POINTS [J].
BEHAN, DF .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 37 (01) :114-120
[4]   Common fixed points of commuting holomorphic maps in the unit ball of Cn [J].
Bracci, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (04) :1133-1141
[5]   Fixed points of commuting holomorphic maps without boundary regularity [J].
Bracci, F .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2000, 43 (03) :294-303
[6]   When do finite Blaschke products commute? [J].
Chalendar, I ;
Mortini, R .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2001, 64 (02) :189-200
[7]  
CORRADINI PP, 1998, P AM MATH SOC, V126, P1697
[8]  
CORRADINI PP, 2000, IN PRESS REV MATEMAT, V25, P487
[9]   COMMUTING ANALYTIC-FUNCTIONS [J].
COWEN, CC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 283 (02) :685-695
[10]  
COWEN CC, 1982, J LOND MATH SOC, V26, P271