Generic and maximal Jordan types

被引:43
作者
Friedlander, Eric M. [1 ]
Pevtsova, Julia
Suslin, Andrei
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
D O I
10.1007/s00222-007-0037-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite group scheme G over a field k of characteristic p > 0, we associate new invariants to a finite dimensional kG-module M. Namely, for each generic point of the projectivized cohomological variety Proj H-. (G, k) we exhibit a "generic Jordan type" of M. In the very special case in which G = E is an elementary abelian p-group, our construction specializes to the non-trivial observation that the Jordan type obtained by restricting M via a generic cyclic shifted subgroup does not depend upon a choice of generators for E. Furthermore, we construct the non-maximal support variety Gamma(G) (M) , a closed subset of Proj H-. (G, k) which is proper even when the dimension of M is not divisible by p.
引用
收藏
页码:485 / 522
页数:38
相关论文
共 23 条
[1]   QUILLEN STRATIFICATION FOR MODULES [J].
AVRUNIN, GS ;
SCOTT, LL .
INVENTIONES MATHEMATICAE, 1982, 66 (02) :277-286
[2]  
Benson D., 1991, REPRESENTATIONS COHO, VI
[3]  
Benson D.J., 1991, Cohomology of Groups and Modules. Cambridge Studies in Advanced Mathematics, V2
[4]  
CARLSON J, IN PRESS J REINE ANG
[5]   THE VARIETIES AND THE CO-HOMOLOGY RING OF A MODULE [J].
CARLSON, JF .
JOURNAL OF ALGEBRA, 1983, 85 (01) :104-143
[6]  
CARLSON JF, 2003, CONT MATH, V325, P51
[7]  
CHOUINARD LG, 1976, J PURE APPL ALGEBRA, V7, P287
[8]  
Collingwood David H., 1993, Mathematics series
[9]  
FRIEDLANDER E, 1997, INVENT MATH, V127, P235
[10]  
FRIEDLANDER E, 1998, DOC MATH EXTRA, V2, P55