An approach to estimating product design time based on fuzzy v-support vector machine

被引:42
作者
Yan, Hong-Sen [1 ]
Xu, Duo [1 ]
机构
[1] Southeast Univ, Res Inst Automat, Nanjing 210096, Peoples R China
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2007年 / 18卷 / 03期
基金
中国国家自然科学基金;
关键词
design time estimation; fuzzy neural network (FNN); fuzzy number; optimal parameters; v-support vector machine (v-SVM);
D O I
10.1109/TNN.2007.894080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new version of fuzzy support vector machine (FSVM) developed for product design time estimation. As there exist problems of finite samples and uncertain data in the estimation, the input and output variables are described as fuzzy numbers, with the metric on fuzzy number space defined. Then, the fuzzy v-support vector machine (Fv-SVM) is proposed on the basis of combining the fuzzy theory with the v-support vector machine, followed by the presentation of a time estimation method based on Fv-SVM and its relevant parameter-choosing algorithm. The results from the applications in injection mold design and software product design confirm the feasibility and validity of the estimation method. Compared with the fuzzy neural network (FNN) model, our Fv-SVM method requires fewer samples and enjoys higher estimating precision.
引用
收藏
页码:721 / 731
页数:11
相关论文
共 40 条
[1]  
Bashir H. A., 2001, Design Studies, V22, P141, DOI DOI 10.1016/S0142-694X(00)00014-4
[2]   Linear and non-linear fuzzy regression: Evolutionary algorithm solutions [J].
Buckley, JJ ;
Feuring, T .
FUZZY SETS AND SYSTEMS, 2000, 112 (03) :381-394
[3]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[4]   Experimentally optimal ν in support vector regression for different noise models and parameter settings [J].
Chalimourda, A ;
Schölkopf, B ;
Smola, AJ .
NEURAL NETWORKS, 2004, 17 (01) :127-141
[5]   The analysis of decomposition methods for support vector machines [J].
Chang, CC ;
Hsu, CW ;
Lin, CJ .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (04) :1003-1008
[6]   Training ν-support vector regression:: Theory and algorithms [J].
Chang, CC ;
Lin, CJ .
NEURAL COMPUTATION, 2002, 14 (08) :1959-1977
[7]   A study on SMO-type decomposition methods for support vector machines [J].
Chen, Pai-Hsuen ;
Fan, Rong-En ;
Lin, Chih-Jen .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (04) :893-908
[8]   Multiple model regression estimation [J].
Cherkassky, V ;
Ma, YQ .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (04) :785-798
[9]   Robust support vector regression networks for function approximation with outliers [J].
Chuang, CC ;
Su, SF ;
Jeng, JT ;
Hsiao, CC .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (06) :1322-1330
[10]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411