Lie conformal algebras related to Galilean conformal algebras

被引:1
作者
Han, Xiu [1 ,2 ]
Wang, Dengyin [1 ]
Xia, Chunguang [1 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
[2] Xuzhou Univ Technol, Sch Math & Phys, Xuzhou 221008, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Lie conformal algebra; conformal derivation; conformal module; COHOMOLOGY;
D O I
10.1142/S0219498821500754
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R(a, b) be a Lie conformal algebra related to Galilean conformal algebras, where a, b are complex numbers. All the conformal derivations of R(a, b) are shown to be inner. The rank one conformal modules and Z-graded free intermediate series modules over R(a, b) are completely classified. The corresponding results of the finite conformal subalgebra of R(a, b) are also obtained as byproducts.
引用
收藏
页数:14
相关论文
共 19 条
[1]   Cohomology of conformal algebras [J].
Bakalov, B ;
Kac, VG ;
Voronov, AA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (03) :561-598
[2]   Theory of finite pseudoalgebras [J].
Bakalov, B ;
D'Andrea, A ;
Kac, VG .
ADVANCES IN MATHEMATICS, 2001, 162 (01) :1-140
[3]   On the classification of subalgebras of CendN and gcN [J].
Boyallian, C ;
Kac, VG ;
Liberati, JI .
JOURNAL OF ALGEBRA, 2003, 260 (01) :32-63
[4]   Finite growth representations of conformal Lie algebras that contain a Virasoro subalgebra [J].
Boyallian, Carina ;
Meinardi, Vanesa .
JOURNAL OF ALGEBRA, 2013, 388 :141-159
[5]   Loop Schrodinger-Virasoro Lie conformal algebra [J].
Chen, Haibo ;
Han, Jianzhi ;
Su, Yucai ;
Xu, Ying .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (06)
[6]  
Cheng S., 1998, Progr. Math., V160
[7]  
Cheng S.-J., 1997, ASIAN J MATH, P181, DOI DOI 10.4310/AJM.1997.v1.n1.a6
[8]   Biderivations and linear commuting maps on the Lie algebra gca [J].
Cheng, Xiao ;
Wang, Minjing ;
Sun, Jiancai ;
Zhang, Honglian .
LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (12) :2483-2493
[9]  
DAndrea A., 1998, SEL MATH-NEW SER, V4, P377, DOI DOI 10.1007/s000290050036
[10]   Lie Conformal Algebra Cohomology and the Variational Complex [J].
De Sole, Alberto ;
Kac, Victor G. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 292 (03) :667-719