HE'S HOMOTOPY PERTURBATION METHOD FOR SOLVING TIME FRACTIONAL SWIFT-HOHENBERG EQUATIONS

被引:29
作者
Ban, Tao [1 ]
Cui, Run-Qing [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat, Jiaozuo, Peoples R China
来源
THERMAL SCIENCE | 2018年 / 22卷 / 04期
关键词
time fractional Swift-Hohenberg equation; homotopy perturbation method; fractional complex transform; S-H EQUATION; DIFFERENTIAL-EQUATIONS; SPACE-TIME; FIELDS;
D O I
10.2298/TSCI1804601B
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper find the most effective method to solve the time fractional Swift-Hohenberg equation with cubic-quintic non-linearity by combining the homotopy perturbation method and the fractional complex transform. The solution reveals some intermittent properties of thermal physics.
引用
收藏
页码:1601 / 1605
页数:5
相关论文
共 27 条
[1]   Convergence of the homotopy perturbation method for partial differential equations [J].
Biazar, J. ;
Ghazvini, H. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) :2633-2640
[2]   Snakes and ladders: Localized states in the Swift-Hohenberg equation [J].
Burke, John ;
Knobloch, Edgar .
PHYSICS LETTERS A, 2007, 360 (06) :681-688
[3]   Solutions of Emden-Fowler equations by homotopy-perturbation method [J].
Chowdhury, M. S. H. ;
Hashim, I. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) :104-115
[4]   Solutions of a class of singular second-order IVPs by homotopy-perturbation method [J].
Chowdhury, M. S. H. ;
Hashim, I. .
PHYSICS LETTERS A, 2007, 365 (5-6) :439-447
[5]   Solution of an integro-differential equation arising in oscillating magnetic fields using He's homotopy perturbation method [J].
Dehghan, M. ;
Shakeri, F. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2008, 78 :361-376
[6]  
Gorji M, 2007, INT J NONLIN SCI NUM, V8, P319
[7]   Comparison of homotopy perturbation method and homotopy analysis method [J].
He, JH .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (02) :527-539
[8]   Homotopy perturbation method: a new nonlinear analytical technique [J].
He, JH .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 135 (01) :73-79
[9]  
Hesameddini E, 2009, INT J NONLIN SCI NUM, V10, P1415
[10]   ON FRACTAL SPACE-TIME AND FRACTIONAL CALCULUS [J].
Hu, Yue ;
He, Ji-Huan .
THERMAL SCIENCE, 2016, 20 (03) :773-777