Identifying the parametric occurrence of multiple steady states for some biological networks

被引:20
作者
Bradford, Russell [1 ]
Davenport, James H. [1 ]
England, Matthew [2 ]
Errami, Hassan [3 ]
Gerdt, Vladimir [4 ,5 ]
Grigoriev, Dima [6 ,7 ]
Hoyt, Charles [8 ]
Kosta, Marek [9 ]
Radulescu, Ovidiu [6 ,10 ]
Sturm, Thomas [11 ,12 ,13 ,14 ]
Weber, Andreas [3 ]
机构
[1] Univ Bath, Dept Comp Sci, Bath, Avon, England
[2] Coventry Univ, Fac Engn Environm & Comp, Coventry, W Midlands, England
[3] Univ Bonn, Inst Informat, Bonn, Germany
[4] JINR, Dubna, Russia
[5] RUDN Univ, Friendship Univ Russia, Moscow, Russia
[6] CNRS, Paris, France
[7] Univ Lille, Lille, France
[8] Univ Bonn, B IT, Dept Life Sci Informat, Bonn, Germany
[9] Slovak Acad Sci, Bratislava, Slovakia
[10] Univ Montpellier, Montpellier, France
[11] CNRS, INRIA, Nancy, France
[12] Univ Lorraine, Nancy, France
[13] MPI Informat, Saarbrucken, Germany
[14] Saarland Univ, Saarbrucken, Germany
基金
英国工程与自然科学研究理事会;
关键词
Mixed equation/inequality solving; Real quantifier elimination; Biological networks; Signalling pathways; MAPK; SOLVING SYSTEMS; MAPK; MULTISTATIONARITY; DECOMPOSITION; INEQUALITIES; BISTABILITY; COMPLEXITY; STABILITY; CHAOS;
D O I
10.1016/j.jsc.2019.07.008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider a problem from biological network analysis of determining regions in a parameter space over which there are multiple steady states for positive real values of variables and parameters. We describe multiple approaches to address the problem using tools from Symbolic Computation. We describe how progress was made to achieve semi-algebraic descriptions of the multistationarity regions of parameter space, and compare symbolic and numerical methods. The biological networks studied are models of the mitogen-activated protein kinases (MAPK) network which has already consumed considerable effort using special insights into its structure of corresponding models. Our main example is a model with 11 equations in 11 variables and 19 parameters, 3 of which are of interest for symbolic treatment. The model also imposes positivity conditions on all variables and parameters. We apply combinations of symbolic computation methods designed for mixed equality / inequality systems, specifically virtual substitution, lazy real triangularization and cylindrical algebraic decomposition, as well as a simplification technique adapted from Gaussian elimination and graph theory. We are able to determine semi-algebraic conditions for multistationarity of our main example over a 2-dimensional parameter space. We also study a second MAPK model and a symbolic grid sampling technique which can locate such regions in 3-dimensional parameter space. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:84 / 119
页数:36
相关论文
共 64 条
[1]  
[Anonymous], 2011, Computer Algebra, DOI DOI 10.1145/1940475.1940524
[2]   CYLINDRICAL ALGEBRAIC DECOMPOSITION .1. THE BASIC ALGORITHM [J].
ARNON, DS ;
COLLINS, GE ;
MCCALLUM, S .
SIAM JOURNAL ON COMPUTING, 1984, 13 (04) :865-877
[3]  
Aubry P, 1999, J SYMB COMPUT, V28, P105, DOI 10.1006/jsco.1998.0269
[4]  
Bates DJ., 2013, BERTINI SOFTWARE NUM, DOI [10.7274/ROH41P135, DOI 10.7274/R0H41P135]
[5]   Emergent properties of networks of biological signaling pathways [J].
Bhalla, US ;
Iyengar, R .
SCIENCE, 1999, 283 (5400) :381-387
[6]  
Bradford R., 2013, LNCS, V7961, P19, DOI DOI 10.1007/978-3-642-39320-4
[7]   A Case Study on the Parametric Occurrence of Multiple Steady States [J].
Bradford, Russell ;
Davenport, James H. ;
England, Matthew ;
Errami, Hassan ;
Gerdt, Vladimir ;
Grigoriev, Dima ;
Hoyt, Charles ;
Kosta, Marek ;
Radulescu, Ovidiu ;
Sturm, Thomas ;
Weber, Andreas .
PROCEEDINGS OF THE 2017 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'17), 2017, :45-52
[8]   Truth table invariant cylindrical algebraic decomposition [J].
Bradford, Russell ;
Davenport, James H. ;
England, Matthew ;
McCallum, Scott ;
Wilson, David .
JOURNAL OF SYMBOLIC COMPUTATION, 2016, 76 :1-35
[9]  
Brown C. W., 2003, SIGSAM Bulletin, V37, P97, DOI 10.1145/968708.968710
[10]  
Caviness B. F., 1998, Quantifier Elimination and Cylindrical Algebraic Decomposition, P1