General synthesis of single-atom catalysts with high metal loading using graphene quantum dots

被引:470
作者
Xia, Chuan [1 ,2 ,3 ]
Qiu, Yunrui [1 ]
Xia, Yang [1 ]
Zhu, Peng [1 ]
King, Graham [4 ]
Zhang, Xiao [1 ]
Wu, Zhenyu [1 ]
Kim, Jung Yoon [1 ]
Cullen, David A. [5 ]
Zheng, Dongxing [6 ]
Li, Peng [6 ]
Shakouri, Mohsen [4 ]
Heredia, Emilio [4 ]
Cui, Peixin [7 ]
Alshareef, Husam N. [6 ]
Hu, Yongfeng [4 ]
Wang, Haotian [1 ,8 ,9 ,10 ]
机构
[1] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[2] Rice Univ, Smalley Curl Inst, Houston, TX USA
[3] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu, Peoples R China
[4] Univ Saskatchewan, Canadian Light Source, Saskatoon, SK, Canada
[5] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA
[6] King Abdullah Univ Sci & Technol, Mat Sci & Engn, Thuwal, Saudi Arabia
[7] Chinese Acad Sci, Inst Soil Sci, Key Lab Soil Environm & Pollut Remediat, Nanjing, Peoples R China
[8] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX USA
[9] Rice Univ, Dept Chem, Houston, TX USA
[10] Canadian Inst Adv Res, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CO2; ELECTROREDUCTION; IDENTIFICATION; OXIDATION; ROUTE; SHELL;
D O I
10.1038/s41557-021-00734-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition-metal single-atom catalysts present extraordinary activity per metal atomic site, but suffer from low metal-atom densities (typically less than 5 wt% or 1 at.%), which limits their overall catalytic performance. Here we report a general method for the synthesis of single-atom catalysts with high transition-metal-atom loadings of up to 40 wt% or 3.8 at.%, representing several-fold improvements compared to benchmarks in the literature. Graphene quantum dots, later interweaved into a carbon matrix, were used as a support, providing numerous anchoring sites and thus facilitating the generation of high densities of transition-metal atoms with sufficient spacing between the metal atoms to avoid aggregation. A significant increase in activity in electrochemical CO2 reduction (used as a representative reaction) was demonstrated on a Ni single-atom catalyst with increased Ni loading.
引用
收藏
页码:887 / +
页数:10
相关论文
共 45 条
  • [31] Facile synthesis of precious-metal single-site catalysts using organic solvents
    Sun, Xi
    Dawson, Simon R.
    Parmentier, Tanja E.
    Malta, Grazia
    Davies, Thomas E.
    He, Qian
    Lu, Li
    Morgan, David J.
    Carthey, Nicholas
    Johnston, Peter
    Kondrat, Simon A.
    Freakley, Simon J.
    Kiely, Christopher J.
    Hutchings, Graham J.
    [J]. NATURE CHEMISTRY, 2020, 12 (06) : 560 - +
  • [32] Selective growth of IrO2 nanorods using metalorganic chemical vapor deposition
    Wang, G
    Tsai, DS
    Huang, YS
    Korotcov, A
    Yeh, WC
    Susanti, D
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2006, 16 (08) : 780 - 786
  • [33] Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal
    Wang, Jiahong
    Zheng, Shourong
    Shao, Yun
    Liu, Jingliang
    Xu, Zhaoyi
    Zhu, Dongqiang
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 349 (01) : 293 - 299
  • [34] A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts
    Wang, Lei
    Chen, Ming-Xi
    Yan, Qiang-Qiang
    Xu, Shi-Long
    Chu, Sheng-Qi
    Chen, Ping
    Lin, Yue
    Liang, Hai-Wei
    [J]. SCIENCE ADVANCES, 2019, 5 (10)
  • [35] Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum
    Wang, Lihua
    Teng, Jiao
    Liu, Pan
    Hirata, Akihiko
    Ma, En
    Zhang, Ze
    Chen, Mingwei
    Han, Xiaodong
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [36] Densely Populated Single Atom Catalysts
    Wu, Jiabin
    Xiong, Liukang
    Zhao, Bote
    Liu, Meilin
    Huang, Liang
    [J]. SMALL METHODS, 2020, 4 (02):
  • [37] A Single-Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction
    Xiao, Meiling
    Zhu, Jianbing
    Li, Gaoran
    Li, Na
    Li, Shuang
    Cano, Zachary Paul
    Ma, Lu
    Cui, Peixin
    Xu, Pan
    Jiang, Gaopeng
    Jin, Huile
    Wang, Shun
    Wu, Tianpin
    Lu, Jun
    Yu, Aiping
    Su, Dong
    Chen, Zhongwei
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (28) : 9640 - 9645
  • [38] Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation
    Xiong, Yu
    Dong, Juncai
    Huang, Zheng-Qing
    Xin, Pingyu
    Chen, Wenxing
    Wang, Yu
    Li, Zhi
    Jin, Zhao
    Xing, Wei
    Zhuang, Zhongbin
    Ye, Jinyu
    Wei, Xing
    Cao, Rui
    Gu, Lin
    Sun, Shigang
    Zhuang, Lin
    Chen, Xiaoqing
    Yang, Hua
    Chen, Chen
    Peng, Qing
    Chang, Chun-Ran
    Wang, Dingsheng
    Li, Yadong
    [J]. NATURE NANOTECHNOLOGY, 2020, 15 (05) : 390 - +
  • [39] Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction
    Yang, Hong Bin
    Hung, Sung-Fu
    Liu, Song
    Yuan, Kaidi
    Miao, Shu
    Zhang, Liping
    Huang, Xiang
    Wang, Hsin-Yi
    Cai, Weizheng
    Chen, Rong
    Gao, Jiajian
    Yang, Xiaofeng
    Chen, Wei
    Huang, Yanqiang
    Chen, Hao Ming
    Li, Chang Ming
    Zhang, Tao
    Liu, Bin
    [J]. NATURE ENERGY, 2018, 3 (02): : 140 - 147
  • [40] A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies
    Zhang, Guoxin
    Jia, Yin
    Zhang, Cong
    Xiong, Xuya
    Sun, Kai
    Chen, Ruida
    Chen, Wenxing
    Kuang, Yun
    Zheng, Lirong
    Tang, Haolin
    Liu, Wen
    Liu, Junfeng
    Sun, Xiaoming
    Lin, Wen-Feng
    Dai, Hongjie
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (04) : 1317 - 1325