An interpolating boundary element-free method (IBEFM) for elasticity problems

被引:72
作者
Ren HongPing [2 ]
Cheng YuMin [1 ]
Zhang Wu [2 ]
机构
[1] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China
[2] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200072, Peoples R China
来源
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY | 2010年 / 53卷 / 04期
基金
中国国家自然科学基金;
关键词
moving least-squares (MLS) approximation; interpolating moving least-squares (IMLS) method; boundary integral equation; meshless method; boundary element-free method (BEFM); interpolating boundary element-free method (IBEFM); elasticity problem; FREE-METHOD BEFM; 2-DIMENSIONAL POTENTIAL PROBLEMS; INTEGRAL-EQUATION LBIE; 2D FRACTURE PROBLEMS; FREE GALERKIN METHOD; NODE METHOD; LINEAR ELASTICITY;
D O I
10.1007/s11433-010-0159-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper begins by discussing the interpolating moving least-squares (IMLS) method. Then the formulae of the IMLS method obtained by Lancaster are revised. On the basis of the boundary element-free method (BEFM), combining the boundary integral equation method with the IMLS method improved in this paper, the interpolating boundary element-free method (IBEFM) for two-dimensional elasticity problems is presented, and the corresponding formulae of the IBEFM for two-dimensional elasticity problems are obtained. In the IMLS method in this paper, the shape function satisfies the property of Kronecker delta function, and then in the IBEFM the boundary conditions can be applied directly and easily. The IBEFM is a direct meshless boundary integral equation method in which the basic unknown quantity is the real solution to the nodal variables. Thus it gives a greater computational precision. Numerical examples are presented to demonstrate the method.
引用
收藏
页码:758 / 766
页数:9
相关论文
共 31 条
[1]  
Atluri SN, 2000, COMPUT MECH, V25, P180
[2]   Meshless methods: An overview and recent developments [J].
Belytschko, T ;
Krongauz, Y ;
Organ, D ;
Fleming, M ;
Krysl, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 139 (1-4) :3-47
[3]  
Brebbia C.A., 1984, BOUNDARY ELEMENT TEC, DOI 10.1007/978-3-642-48860-3
[4]  
Chati MK, 1999, INT J NUMER METH ENG, V46, P1163, DOI 10.1002/(SICI)1097-0207(19991120)46:8<1163::AID-NME742>3.0.CO
[5]  
2-Y
[6]  
Chati MK, 2000, INT J NUMER METH ENG, V47, P1523, DOI 10.1002/(SICI)1097-0207(20000330)47:9<1523::AID-NME836>3.3.CO
[7]  
2-K
[8]   Reply to 'Comments on 'Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems" [J].
Cheng, Y. ;
Liew, K. M. ;
Kitipornchai, S. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 78 (10) :1258-1260
[9]   A complex variable meshless method for fracture problems [J].
Cheng, YM ;
Li, JH .
SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2006, 49 (01) :46-59
[10]   Boundary element-free method for elastodynamics [J].
Cheng, YM ;
Peng, MJ .
SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2005, 48 (06) :641-657