Software Defect Prediction Based on Cost-Sensitive Dictionary Learning

被引:8
|
作者
Wan, Hongyan [1 ]
Wu, Guoqing [1 ]
Yu, Mali [2 ]
Yuan, Mengting [1 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Hubei, Peoples R China
[2] Jiujiang Univ, Sch Informat Sci & Technol, Jiujiang 332005, Peoples R China
关键词
Software defect prediction; dictionary learning; cost-sensitive; bilevel optimization; sparse coding; SPARSE REPRESENTATIONS; NEURAL-NETWORKS; QUALITY;
D O I
10.1142/S0218194019500384
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Software defect prediction technology has been widely used in improving the quality of software system. Most real software defect datasets tend to have fewer defective modules than defective-free modules. Highly class-imbalanced data typically make accurate predictions difficult. The imbalanced nature of software defect datasets makes the prediction model classifying a defective module as a defective-free one easily. As there exists the similarity during the different software modules, one module can be represented by the sparse representation coefficients over the pre-defined dictionary which consists of historical software defect datasets. In this study, we make use of dictionary learning method to predict software defect. We optimize the classifier parameters and the dictionary atoms iteratively, to ensure that the extracted features (sparse representation) are optimal for the trained classifier. We prove the optimal condition of the elastic net which is used to solve the sparse coding coefficients and the regularity of the elastic net solution. Due to the reason that the misclassification of defective modules generally incurs much higher cost risk than the misclassification of defective-free ones, we take the different misclassification costs into account, increasing the punishment on misclassification defective modules in the procedure of dictionary learning, making the classification inclining to classify a module as a defective one. Thus, we propose a cost-sensitive software defect prediction method using dictionary learning (CSDL). Experimental results on the 10 class-imbalance datasets of NASA show that our method is more effective than several typical state-of-the-art defect prediction methods.
引用
收藏
页码:1219 / 1243
页数:25
相关论文
共 50 条
  • [31] Improving Ranking-Oriented Defect Prediction Using a Cost-Sensitive Ranking SVM
    Yu, Xiao
    Liu, Jin
    Keung, Jacky Wai
    Li, Qing
    Bennin, Kwabena Ebo
    Xu, Zhou
    Wang, Junping
    Cui, Xiaohui
    IEEE TRANSACTIONS ON RELIABILITY, 2020, 69 (01) : 139 - 153
  • [32] Merge reduction for cost-sensitive learning
    Zhang, Aiting
    Xu, Juan
    Chen, Wenbin
    Min, Fan
    Journal of Computational Information Systems, 2014, 10 (23): : 10093 - 10102
  • [33] Robust SVM for Cost-Sensitive Learning
    Gan, Jiangzhang
    Li, Jiaye
    Xie, Yangcai
    NEURAL PROCESSING LETTERS, 2022, 54 (04) : 2737 - 2758
  • [34] Cost-Sensitive Siamese Network for PCB Defect Classification
    Miao, Yilin
    Liu, Zhewei
    Wu, Xiangning
    Gao, Jie
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021 (2021)
  • [35] Machine learning models and cost-sensitive decision trees for bond rating prediction
    Ben Jabeur, Sarni
    Sadaaoui, Amir
    Sghaier, Asma
    Aloui, Riadh
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2020, 71 (08) : 1161 - 1179
  • [36] A genetic algorithm-based approach to cost-sensitive bankruptcy prediction
    Chen, Ning
    Ribeiro, Bernardete
    Vieira, Armando S.
    Duarte, Joao
    Neves, Joao C.
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (10) : 12939 - 12945
  • [37] Multiple kernel ensemble learning for software defect prediction
    Wang, Tiejian
    Zhang, Zhiwu
    Jing, Xiaoyuan
    Zhang, Liqiang
    AUTOMATED SOFTWARE ENGINEERING, 2016, 23 (04) : 569 - 590
  • [38] Semi-supervised Software Defect Prediction Using Task-Driven Dictionary Learning
    Cheng Ming
    Wu Guoqing
    Yuan Mengting
    Wan Hongyan
    CHINESE JOURNAL OF ELECTRONICS, 2016, 25 (06) : 1089 - 1096
  • [39] Semi-supervised Software Defect Prediction Using Task-Driven Dictionary Learning
    CHENG Ming
    WU Guoqing
    YUAN Mengting
    WAN Hongyan
    ChineseJournalofElectronics, 2016, 25 (06) : 1089 - 1096
  • [40] Software Defect Prediction Method Based on Clustering Ensemble Learning
    Tao, Hongwei
    Cao, Qiaoling
    Chen, Haoran
    Li, Yanting
    Niu, Xiaoxu
    Wang, Tao
    Geng, Zhenhao
    Shang, Songtao
    IET SOFTWARE, 2024, 2024