DEMO First Wall misalignment study

被引:10
作者
Vizvary, Z. [1 ]
Arter, W. [1 ]
Barrett, T. R. [1 ]
Calleja, D. [3 ]
Firdaous, M. [2 ]
Gerardin, J. [2 ]
Kovari, M. [1 ]
Maviglia, F. [4 ]
Richiusa, M. L. [1 ]
机构
[1] CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] IRFM CEA Cadarache, F-13108 St Paul Les Durance, France
[3] Univ Liverpool, Liverpool, Merseyside, England
[4] EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany
基金
英国工程与自然科学研究理事会;
关键词
DEMO; First Wall; Misalignment; Particle heat flux; FEM; TEST BLANKET MODULE; NUMERICAL INVESTIGATIONS; HEAT-TRANSFER;
D O I
10.1016/j.fusengdes.2019.04.046
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Within the DEMO first wall 3D shape design activity, studying the effect of misalignment started in 2017. Such assessments have been conducted in the past for ITER and heat flux penalty factor maps have been created [1], this route could be a feasible approach in the case of DEMO as well. This paper details the methodology that allows the effects of misalignments to be assessed for DEMO. The test cases focus on steady-state plasma operation (start of flat top). The aim is to understand the effect of basic misaligned cases, for example radial protrusion/recession or poloidal rotation of a single module. To do so, particle tracing software codes such as SMARDDA and PFCflux have been used to create heat flux maps that reach the first wall surfaces. These heat flux maps, combined with the specified radiative heat load, are used as input for simplified FE models of the blanket modules. As a result, not only the effect on heat flux, but also on the temperature (and later stress) distributions can be estimated. The paper describes how the obtained results can be implemented in ANSYS in the identified critical cases from the test matrix that has been studied. The results obtained from the nominal heat flux map are compared to the misaligned cases. The mitigating effect of the 3D nature of the heat conduction on the peak temperature is discussed. This work paves the way to assessing more realistic combined misaligned cases (such as misalignment from different thermal expansion, or due to electromagnetic loads etc. of neighbouring blankets) in the future.
引用
收藏
页码:2577 / 2580
页数:4
相关论文
共 10 条
[1]   Thermal-hydraulics of helium cooled First Wall channels and scoping investigations on performance improvement by application of ribs and mixing devices [J].
Arbeiter, Frederik ;
Bachmann, Christian ;
Chen, Yuming ;
Ilic, Milica ;
Schwab, Florian ;
Sieglin, Bernhard ;
Wenninger, Ronald .
FUSION ENGINEERING AND DESIGN, 2016, 109 :1123-1129
[2]  
Calleja D.C., 2018, 3 INT C VULN RISK AN
[3]   Design update, thermal and fluid dynamic analyses of the EU-HCPB TBM in vertical arrangement [J].
Cismondi, F. ;
Kecskes, S. ;
Ilic, M. ;
Legradi, G. ;
Kiss, B. ;
Bitz, O. ;
Dolensky, B. ;
Neuberger, H. ;
Boccaccini, L. V. ;
Ihli, T. .
FUSION ENGINEERING AND DESIGN, 2009, 84 (2-6) :607-612
[4]   Effect of design geometry of the demo first wall on the plasma heat load [J].
Igitkhanov, Yu ;
Fetzer, R. ;
Bazylev, B. .
NUCLEAR MATERIALS AND ENERGY, 2016, 9 :560-564
[5]   An improved model for the accurate calculation of parallel heat fluxes at the JET bulk tungsten outer divertor [J].
Iglesias, D. ;
Bunting, P. ;
Coenen, J. W. ;
Matthews, G. F. ;
Pitts, R. A. ;
Silburn, S. ;
Balboa, I. ;
Coffey, I. ;
Corre, Y. ;
Dejarnac, R. ;
Gaspar, J. ;
Gauthier, E. ;
Jachmich, S. ;
Krieger, K. ;
Pamela, S. ;
Riccardo, V. ;
Stamp, M. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amicucci, L. ;
Amosov, V. ;
Sunden, E. Andersson ;
Angelone, M. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Appelbee, C. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. .
NUCLEAR FUSION, 2018, 58 (10)
[6]  
Ilic M, 2015, FUSION ENG DES, V90, P37, DOI 10.1016/j.fusengdes.2014.11.001
[7]   Experimental and numerical investigations of heat transfer in the first wall of Helium-Cooled-Pebble-Bed Test Blanket Module - Part 1: Presentation of test section and 3D CFD model [J].
Ilic, M. ;
Messemer, G. ;
Zinn, K. ;
Meyder, R. ;
Kecskes, S. ;
Kiss, B. .
FUSION ENGINEERING AND DESIGN, 2015, 90 :29-36
[8]   Effect of engineering constraints on charged particle wall heat loads in DEMO [J].
Maviglia, F. ;
Federici, G. ;
Wenninger, R. ;
Albanese, R. ;
Ambrosino, R. ;
Bachmann, C. ;
Barbato, L. ;
Cismondi, F. ;
Firdaouss, M. ;
Loschiavo, V. P. ;
Lowry, C. .
FUSION ENGINEERING AND DESIGN, 2017, 124 :385-390
[9]   The combined effects of magnetic asymmetry, assembly and manufacturing tolerances on the plasma heat load to the ITER first wall [J].
Mitteau, R. ;
Stangeby, P. ;
Labidi, H. ;
Bruno, R. ;
Raffray, R. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :411-414
[10]   Progress on DEMO blanket attachment concept with keys and pins [J].
Vizvary, Zsolt ;
Iglesias, Daniel ;
Cooper, David ;
Crowe, Robert ;
Riccardo, Valeria .
FUSION ENGINEERING AND DESIGN, 2015, 98-99 :1674-1677