A Dual-Response DNA Probe for Simultaneously Monitoring Enzymatic Activity and Environmental pH Using a Nanopore

被引:56
作者
Liu, Lei [1 ,2 ]
You, Yi [3 ]
Zhou, Ke [1 ]
Guo, Bingyuan [1 ]
Cao, Zhong [3 ]
Zhao, Yuliang [2 ]
Wu, Hai-Chen [1 ,4 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Mol Sci, Key Lab Analyt Chem Living Biosyst, Inst Chem, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Key Lab Biomed Effects Nanomat Nanosafety, Inst High Energy Phys, Beijing 100049, Peoples R China
[3] Changsha Univ Sci & Technol, Collaborat Innovat Ctr Micro Nano Biosensing & Fo, Sch Chem & Biol Engn, Hunan Prov Key Lab Mat Protect Elect Power & Tran, Changsha 410114, Hunan, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
DNA probe; host-guest systems; nanopore; simultaneous quantification; single-molecule studies; CATHEPSIN-B; LABEL-FREE; FLUORESCENT-PROBE; PROTEASE ACTIVITY; TUMORS;
D O I
10.1002/anie.201907816
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Both protease overexpression and local pH changes are key signatures of cancer. However, the sensitive detection of protease activities and the accurate measurement of pH in a tumor environment remain challenging. Here, we develop a dual-response DNA probe that can simultaneously monitor protease activities and measure the local pH by translocation through alpha-hemolysin (alpha HL). The DNA probe bears a short peptide containing phenylalanine at a pre-designed position. Enzymatic cleavage of the peptide either exposes or removes the N-terminal phenylalanine that can form a complex with cucurbit[7]uril. Translocation of the DNA hybrid through alpha HL generates current signatures that can be used to quantify protease activities. Furthermore, the current signatures possess a pH-dependent pattern that reflects the local pH. Our results demonstrate that the versatile DNA probe may be further explored for simultaneously measuring multiple parameters of a complex system such as single cells in the future.
引用
收藏
页码:14929 / 14934
页数:6
相关论文
共 52 条
[1]   Cathepsin B: Multiple roles in cancer [J].
Aggarwal, Neha ;
Sloane, Bonnie F. .
PROTEOMICS CLINICAL APPLICATIONS, 2014, 8 (5-6) :427-437
[2]  
[Anonymous], 2018, ANGEW CHEM
[3]  
[Anonymous], 2015, ANGEW CHEM INT EDIT
[4]   Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope [J].
Aramesh, Morteza ;
Forro, Csaba ;
Dorwling-Carter, Livie ;
Luechtefeld, Ines ;
Schlotter, Tilman ;
Ihle, Stephan J. ;
Shorubalko, Ivan ;
Hosseini, Vahid ;
Momotenko, Dmitry ;
Zambelli, Tomaso ;
Klotzsch, Enrico ;
Voeroes, Janos .
NATURE NANOTECHNOLOGY, 2019, 14 (08) :791-+
[5]   Stochastic sensors inspired by biology [J].
Bayley, H ;
Cremer, PS .
NATURE, 2001, 413 (6852) :226-230
[6]  
Cao C, 2016, NAT NANOTECHNOL, V11, P713, DOI [10.1038/nnano.2016.66, 10.1038/NNANO.2016.66]
[7]   In vivo near-infrared imaging and phototherapy of tumors using a cathepsin B-activated fluorescent probe [J].
Chen, Xiaoqiang ;
Lee, Dayoung ;
Yu, Sungsook ;
Kim, Gyoungmi ;
Lee, Songyi ;
Cho, Yejin ;
Jeong, Haengdueng ;
Nam, Ki Taek ;
Yoon, Juyoung .
BIOMATERIALS, 2017, 122 :130-140
[8]   Protease-Activated Drug Development [J].
Choi, Ki Young ;
Swierczewska, Magdalena ;
Lee, Seulki ;
Chen, Xiaoyuan .
THERANOSTICS, 2012, 2 (02) :156-178
[9]   Enhancement of charged macromolecule capture by nanopores in a salt gradient [J].
Chou, Tom .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (03)
[10]  
Diamandis EP, 2002, CLIN CHEM, V48, P1198