ON OSCILLATIONS OF REAL-VALUED FUNCTIONS

被引:0
|
作者
Kharazishvili, Alexander [1 ,2 ]
机构
[1] I Javakhishvili Tbilisi State Univ, A Razmadze Math Inst, 6 Tamarashvili STR, GE-0177 Tbilisi, Georgia
[2] I Vekua Inst Appl Math, 2 Univ Str, GE-0186 Tbilisi, Georgia
基金
美国国家科学基金会;
关键词
Upper semicontinuous function; Oscillation of a real-valued function; b-point; Countably complete ultrafilter;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the question whether a given real-valued non-negative upper semi-continuous function on a topological space E is the oscillation function of a Borel real-valued function defined on the same space E.
引用
收藏
页码:63 / 67
页数:5
相关论文
共 50 条
  • [1] On real-valued oscillations of a bipendulum
    Kozlov, Valery V.
    Buslaev, Alexander P.
    Tatashev, Alexander G.
    APPLIED MATHEMATICS LETTERS, 2015, 46 : 44 - 49
  • [2] for derivative of real-valued functions
    Magiotto, Murilo H.
    Zanin, Guilherme L.
    Cardoso, Wesley B.
    Avelar, Ardiley T.
    Gomes, Rafael M.
    OPTICS AND LASER TECHNOLOGY, 2025, 182
  • [3] The ring of real-valued functions on a frame
    Feizabadi, A. Karimi
    Estaji, A. A.
    Zarghani, M.
    CATEGORIES AND GENERAL ALGEBRAIC STRUCTURES WITH APPLICATIONS, 2016, 5 (01) : 85 - 102
  • [4] Rotating real-valued functions in the plane
    Bravo, Daniel
    Fera, Joseph
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2015, 46 (08) : 1259 - 1264
  • [5] Distance transforms for real-valued functions
    Molchanov, IS
    Terán, P
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 278 (02) : 472 - 484
  • [6] GLOBAL MAXIMA OF REAL-VALUED FUNCTIONS
    GABRIELSEN, G
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1986, 50 (02) : 257 - 266
  • [7] A continuous derivative for real-valued functions
    Edalat, Abbas
    Computation and Logic in the Real World, Proceedings, 2007, 4497 : 248 - 257
  • [9] POLYHEDRAL QUASIDIFFERENTIABILITY OF REAL-VALUED FUNCTIONS
    GOROKHOVIK, VV
    ZORKO, OI
    DOKLADY AKADEMII NAUK BELARUSI, 1992, 36 (05): : 393 - 397
  • [10] ON ALMOST MEASURABLE REAL-VALUED FUNCTIONS
    Kharazishvili, Alexander B.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2010, 47 (02) : 257 - 266