Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory

被引:96
作者
Ebrahimi, Farzad [1 ]
Farazmandnia, Navid [1 ]
机构
[1] Imam Khomeini Int Univ, Dept Mech Engn, Fac Engn, Qazvin 3414916818, Iran
关键词
Free vibration; functionally graded carbon nanotube-reinforced composite (FG-CNTRC); new higher-order shear deformation beam theory (HSBT); sandwich beam; thermal environments; MOLECULAR-DYNAMICS SIMULATIONS; ELASTIC PROPERTIES; POSTBUCKLING BEHAVIOR; NONLINEAR VIBRATION; STATIC ANALYSIS; NANOBEAMS; PLATES; FOUNDATIONS;
D O I
10.1080/15376494.2016.1196786
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article proposes a higher-order shear deformation beam theory for free vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in a thermal environment. The temperature-dependent material properties of functionally graded carbon nanotube-reinforced composite beams are supposed to vary continuously in the thickness direction and are estimated through the rule of mixture. The governing equations and boundary conditions are derived by using Hamilton's principle, and the Navier solution procedure is used to achieve the natural frequencies of the sandwich beam in a thermal environment. A parametric study is led to carry out the effects of carbon nanotube volume fractions, slenderness ratio, and core-to-face sheet thickness ratio on free vibration behavior of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets. Numerical results are also presented in order to compare the behavior of sandwich beams including uniformly distributed carbon nanotube-reinforced composite face sheets to those including functionally graded carbon nanotube-reinforced composite face sheets.
引用
收藏
页码:820 / 829
页数:10
相关论文
共 54 条
[1]   ALIGNED CARBON NANOTUBE ARRAYS FORMED BY CUTTING A POLYMER RESIN-NANOTUBE COMPOSITE [J].
AJAYAN, PM ;
STEPHAN, O ;
COLLIEX, C ;
TRAUTH, D .
SCIENCE, 1994, 265 (5176) :1212-1214
[2]   Free vibration analysis of sandwich beam with FG core using the element free Galerkin method [J].
Amirani, M. Chehel ;
Khalili, S. M. R. ;
Nemati, N. .
COMPOSITE STRUCTURES, 2009, 90 (03) :373-379
[3]   Modeling the elastic properties of carbon nanotube array/polymer composites [J].
Ashrafi, B ;
Hubert, P .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (3-4) :387-396
[4]   Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations [J].
Atmane, Hassen Ait ;
Tounsi, Abdelouahed ;
Bernard, Fabrice .
INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2017, 13 (01) :71-84
[5]   Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core [J].
Bhangale, Rajesh K. ;
Ganesan, N. .
JOURNAL OF SOUND AND VIBRATION, 2006, 295 (1-2) :294-316
[6]   Thermal properties and percolation in carbon nanotube-polymer composites [J].
Bonnet, P. ;
Sireude, D. ;
Garnier, B. ;
Chauvet, O. .
APPLIED PHYSICS LETTERS, 2007, 91 (20)
[7]   Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method [J].
Bui, T. Q. ;
Khosravifard, A. ;
Zhang, Ch. ;
Hematiyan, M. R. ;
Golub, M. V. .
ENGINEERING STRUCTURES, 2013, 47 :90-104
[8]  
Carrera E, 2011, BEAM STRUCTURES: CLASSICAL AND ADVANCED THEORIES, P1, DOI 10.1002/9781119978565
[9]   Effects of thickness stretching in functionally graded plates and shells [J].
Carrera, E. ;
Brischetto, S. ;
Cinefra, M. ;
Soave, M. .
COMPOSITES PART B-ENGINEERING, 2011, 42 (02) :123-133
[10]  
Carrera E., 2013, J COMPOS MATER