A new approach to solve nonlinear wave equations

被引:0
作者
Fu, ZT [1 ]
Liu, SK [1 ]
Liu, SD [1 ]
机构
[1] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
关键词
sine-Gordon equation; Jacobi elliptic function; nonlinear wave equation; periodic wave solution; solitary wave solution;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
From the nonlinear sine-Gordon equation, new transformations are obtained in this paper, which are applied to propose a new approach to construct exact periodic solutions to nonlinear wave equations. It is shown that more new periodic solutions can be obtained by this new approach, and more. shock wave solutions or solitary wave solutions car! be got under their limit conditions.
引用
收藏
页码:27 / 30
页数:4
相关论文
共 18 条
[11]   Exact periodic solutions of the complex Ginzburg-Landau equation [J].
Porubov, AV ;
Velarde, MG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) :884-896
[12]   Periodical solution to the nonlinear dissipative equation for surface waves in a convecting liquid layer [J].
Porubov, AV .
PHYSICS LETTERS A, 1996, 221 (06) :391-394
[13]  
PRASOLOV V, 1997, ELLITIC FUNCTIONS EL
[14]   SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS [J].
WANG, ML .
PHYSICS LETTERS A, 1995, 199 (3-4) :169-172
[15]   Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics [J].
Wang, ML ;
Zhou, YB ;
Li, ZB .
PHYSICS LETTERS A, 1996, 216 (1-5) :67-75
[16]   A simple transformation for nonlinear waves [J].
Yan, CT .
PHYSICS LETTERS A, 1996, 224 (1-2) :77-84
[17]   Exact solutions of nonlinear PDE, nonlinear transformations and reduction of nonlinear PDE to a quadrature [J].
Yang, L ;
Liu, JB ;
Yang, KQ .
PHYSICS LETTERS A, 2001, 278 (05) :267-270
[18]   Exact solutions of nonlinear equations [J].
Yang, L ;
Zhu, ZG ;
Wang, YH .
PHYSICS LETTERS A, 1999, 260 (1-2) :55-59