ULTRASOUND IMAGE DISCRIMINATION BETWEEN BENIGN AND MALIGNANT ADNEXAL MASSES BASED ON A NEURAL NETWORK APPROACH

被引:38
作者
Aramendia-Vidaurreta, Veronica [1 ]
Cabeza, Rafael [1 ]
Villanueva, Arantxa [1 ]
Navallas, Javier [1 ]
Luis Alcazary, Juan [2 ]
机构
[1] Univ Publ Navarra, Dept Elect & Elect Engn, Pamplona, Spain
[2] Univ Navarra Clin, Dept Obstet & Gynecol, Pamplona, Spain
关键词
Adnexal mass; Texture feature; Classification; Neural network; SUBJECTIVE ASSESSMENT; OVARIAN-TUMORS; MANAGEMENT; SURGERY; MODELS; RULES; WOMEN;
D O I
10.1016/j.ultrasmedbio.2015.11.014
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The discrimination between benign and malignant adnexal masses in ultrasound images represents one of the most challenging problems in gynecologic practice. In the study described here, a new method for automatic discrimination of adnexal masses based on a neural networks approach was tested. The proposed method first calculates seven different types of characteristics (local binary pattern, fractal dimension, entropy, invariant moments, gray level co-occurrence matrix, law texture energy and Gabor wavelet) from ultrasound images of the ovary, from which several features are extracted and collected together with the clinical patient age. The proposed technique was validated using 106 benign and 39 malignant images obtained from 145 patients, corresponding to its probability of appearance in general population. On evaluation of the classifier, an accuracy of 98.78%, sensitivity of 98.50%, specificity of 98.90% and area under the curve of 0.997 were calculated. (E-mail: veronica.aramendia@gmail.com) (C) 2016 World Federation for Ultrasound in Medicine & Biology.
引用
收藏
页码:742 / 752
页数:11
相关论文
共 28 条
[21]   Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance [J].
Mazurowski, Maciej A. ;
Habas, Piotr A. ;
Zurada, Jacek A. ;
Lo, Joseph Y. ;
Baker, Jay A. ;
Tourassi, Georgia D. .
NEURAL NETWORKS, 2008, 21 (2-3) :427-436
[22]   Simple ultrasound-based rules for the diagnosis of ovarian cancer [J].
Timmerman, D. ;
Testa, A. C. ;
Bourne, T. ;
Ameye, L. ;
Jurkovic, D. ;
Van Holsbeke, C. ;
Paladini, D. ;
Van Calster, B. ;
Vergote, I. ;
Van Huffel, S. ;
Valentin, L. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2008, 31 (06) :681-690
[23]   Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: A multicenter study by the International Ovarian Tumor Analysis Group [J].
Timmerman, D ;
Testa, AC ;
Bourne, T ;
Ferrazzi, E ;
Ameye, L ;
Konstantinovic, ML ;
Van Calster, B ;
Collins, WP ;
Vergote, I ;
Van Huffel, S ;
Valentin, L .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (34) :8794-8801
[24]   Artificial neural network models for the preoperative discrimination between malignant and benign adnexal masses [J].
Timmerman, D ;
Verrelst, H ;
Bourne, TH ;
De Moor, B ;
Collins, WP ;
Vergote, I ;
Vandewalle, J .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 1999, 13 (01) :17-25
[25]   Subjective assessment of adnexal masses with the use of ultrasonography:: an analysis of interobserver variability and experience [J].
Timmerman, D ;
Schwärzler, P ;
Collins, WP ;
Claerhout, F ;
Coenen, M ;
Amant, F ;
Vergote, I ;
Bourne, TH .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 1999, 13 (01) :11-16
[26]   Use of morphology to characterize and manage common adnexal masses [J].
Valentin, L .
BEST PRACTICE & RESEARCH IN CLINICAL OBSTETRICS & GYNAECOLOGY, 2004, 18 (01) :71-89
[27]   Adnexal masses difficult to classify as benign or malignant using subjective assessment of gray-scale and Doppler ultrasound findings: logistic regression models do not help [J].
Valentin, L. ;
Ameye, L. ;
Savelli, L. ;
Fruscio, R. ;
Leone, F. P. G. ;
Czekierdowski, A. ;
Lissoni, A. A. ;
Fischerova, D. ;
Guerriero, S. ;
Van Holsbeke, C. ;
Van Huffel, S. ;
Timmerman, D. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2011, 38 (04) :456-465
[28]   Ultrasound Experience Substantially Impacts on Diagnostic Performance and Confidence when Adnexal Masses Are Classified Using Pattern Recognition [J].
Van Holsbeke, Caroline ;
Daemen, Anneleen ;
Yazbek, Joseph ;
Holland, Tom K. ;
Bourne, Tom ;
Mesens, Tinne ;
Lannoo, Lore ;
Boes, Anne-Sophie ;
Joos, Annelies ;
Van De Vijver, Arne ;
Roggen, Nele ;
de Moor, Bart ;
de Jonge, Eric ;
Testa, Antonia C. ;
Valentin, Lil ;
Jurkovic, Davor ;
Timmerman, Dirk .
GYNECOLOGIC AND OBSTETRIC INVESTIGATION, 2010, 69 (03) :160-168