ULTRASOUND IMAGE DISCRIMINATION BETWEEN BENIGN AND MALIGNANT ADNEXAL MASSES BASED ON A NEURAL NETWORK APPROACH

被引:38
作者
Aramendia-Vidaurreta, Veronica [1 ]
Cabeza, Rafael [1 ]
Villanueva, Arantxa [1 ]
Navallas, Javier [1 ]
Luis Alcazary, Juan [2 ]
机构
[1] Univ Publ Navarra, Dept Elect & Elect Engn, Pamplona, Spain
[2] Univ Navarra Clin, Dept Obstet & Gynecol, Pamplona, Spain
关键词
Adnexal mass; Texture feature; Classification; Neural network; SUBJECTIVE ASSESSMENT; OVARIAN-TUMORS; MANAGEMENT; SURGERY; MODELS; RULES; WOMEN;
D O I
10.1016/j.ultrasmedbio.2015.11.014
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The discrimination between benign and malignant adnexal masses in ultrasound images represents one of the most challenging problems in gynecologic practice. In the study described here, a new method for automatic discrimination of adnexal masses based on a neural networks approach was tested. The proposed method first calculates seven different types of characteristics (local binary pattern, fractal dimension, entropy, invariant moments, gray level co-occurrence matrix, law texture energy and Gabor wavelet) from ultrasound images of the ovary, from which several features are extracted and collected together with the clinical patient age. The proposed technique was validated using 106 benign and 39 malignant images obtained from 145 patients, corresponding to its probability of appearance in general population. On evaluation of the classifier, an accuracy of 98.78%, sensitivity of 98.50%, specificity of 98.90% and area under the curve of 0.997 were calculated. (E-mail: veronica.aramendia@gmail.com) (C) 2016 World Federation for Ultrasound in Medicine & Biology.
引用
收藏
页码:742 / 752
页数:11
相关论文
共 28 条
[1]  
Acharya U, 2012, OVARIAN NEOPLASM IMA
[2]  
Acharya U, 2012, P 34 ANN INT C IEEE
[3]   Evolutionary Algorithm-Based Classifier Parameter Tuning for Automatic Ovarian Cancer Tissue Characterization and Classification [J].
Acharya, U. R. ;
Mookiah, M. R. K. ;
Sree, S. Vinitha ;
Yanti, R. ;
Martis, R. J. ;
Saba, L. ;
Molinari, F. ;
Guerriero, S. ;
Suri, J. S. .
ULTRASCHALL IN DER MEDIZIN, 2014, 35 (03) :237-245
[4]   Ovarian Tumor Characterization using 3D Ultrasound [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Krishnan, M. Muthu Rama ;
Saba, Luca ;
Molinari, Filippo ;
Guerriero, Stefano ;
Sun, Jasjit S. .
TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2012, 11 (06) :543-552
[5]   Triage for surgical management of ovarian tumors in asymptomatic women:: assessment of an ultrasound-based scoring system [J].
Alcazar, J. L. ;
Royo, P. ;
Jurado, M. ;
Minguez, J. A. ;
Garcia-Manero, M. ;
Laparte, C. ;
Galvan, R. ;
Lopez-Garcia, G. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2008, 32 (02) :220-225
[6]   IOTA simple rules for discriminating between benign and malignant adnexal masses: prospective external validation [J].
Alcazar, J. L. ;
Pascual, M. A. ;
Olartecoechea, B. ;
Graupera, B. ;
Auba, M. ;
Ajossa, S. ;
Hereter, L. ;
Julve, R. ;
Gaston, B. ;
Peddes, C. ;
Sedda, F. ;
Piras, A. ;
Saba, L. ;
Guerriero, S. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2013, 42 (04) :467-471
[7]   Expectant management of adnexal masses in selected premenopausal women: a prospective observational study [J].
Alcazar, J. L. ;
Olartecoechea, B. ;
Guerriero, S. ;
Jurado, M. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2013, 41 (05) :582-588
[8]   A new scoring system to differentiate benign from malignant adnexal masses [J].
Alcázar, JL ;
Mercé, LT ;
Laparte, C ;
Jurado, M ;
López-García, G .
AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2003, 188 (03) :685-692
[9]  
American College of Obstetricians and Gynecologists, 2007, Obstet Gynecol, V110, P201
[10]  
Bailey D. L., 1990, AI Expert, V5, P34