Design and fabrication of an optimum peripheral region for low gain avalanche detectors

被引:30
作者
Fernandez-Martinez, Pablo [1 ]
Flores, D. [1 ]
Hidalgo, S. [1 ]
Greco, V. [1 ]
Merlos, A. [1 ]
Pellegrini, G. [1 ]
Quirion, D. [1 ]
机构
[1] IMB CNM CSIC, Inst Microelect Barcelona, Campus UAB, Barcelona 08193, Spain
关键词
Silicon detectors; Avalanche multiplication; LGAD; Process technology; Oxide charge; SILICON; PHOTODIODES;
D O I
10.1016/j.nima.2016.03.049
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Low Gain Avalanche Detectors (LGAD) represent a remarkable advance in high energy particle detection, since they provide a moderate increase (gain 10) of the collected charge, thus leading to a notable improvement of the signal-to-noise ratio, which largely extends the possible application of Silicon detectors beyond their present working field. The optimum detection performance requires a careful implementation of the multiplication junction, in order to obtain the desired gain on the read out signal, but also a proper design of the edge termination and the peripheral region, which prevents the LGAD detectors from premature breakdown and large leakage current. This work deals with the critical technological aspects required to optimize the LGAD structure. The impact of several design strategies for the device periphery is evaluated with the aid of TCAD simulations, and compared with the experimental results obtained from the first LGAD prototypes fabricated at the IMB-CNM clean room. Solutions for the peripheral region improvement are also provided. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 17 条
  • [1] Baliga B. J., 2010, Fundamentals of Power Semiconductor Devices
  • [2] Silicon avalanche photodiodes for direct detection of X-rays
    Baron, AQR
    Kishimoto, S
    Morse, J
    Rigal, JM
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 2006, 13 (131-142) : 131 - 142
  • [3] Chilingarov A., RD50 RECOMMENDATIO 1
  • [4] Hshieh F.I., 1998, US Patent, Patent No. [US5844277 A, 5844277]
  • [5] Jackson Kenneth A., 1998, SILICON DEVICES STRU
  • [6] Radiation effects in Low Gain Avalanche Detectors after hadron irradiations
    Kramberger, G.
    Baselga, M.
    Cindro, V.
    Fernandez-Martinez, P.
    Flores, D.
    Galloway, Z.
    Gorisek, A.
    Greco, V.
    Hidalgo, S.
    Fadeyev, V.
    Mandic, I.
    Mikuz, M.
    Quirion, D.
    Pellegrini, G.
    Sadrozinski, H. F-W.
    Studen, A.
    Zavrtanik, M.
    [J]. JOURNAL OF INSTRUMENTATION, 2015, 10
  • [7] Comparison of radiation hardness of P-in-N, N-in-N, and N-in-P silicon pad detectors
    Lozano, M
    Pellegrini, G
    Fleta, C
    Loderer, C
    Rafí, JM
    Ullán, M
    Campabadal, F
    Martínez, C
    Key, M
    Casse, G
    Allport, P
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2005, 52 (05) : 1468 - 1473
  • [8] PHOSPHORUS DIFFUSION IN SILICON UNDER OXIDIZING ATMOSPHERES
    MASETTI, G
    SOLMI, S
    SONCINI, G
    [J]. SOLID-STATE ELECTRONICS, 1973, 16 (12) : 1419 - 1421
  • [9] MULTIPLICATION NOISE IN UNIFORM AVALANCHE DIODES
    MCINTYRE, RJ
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1966, ED13 (01) : 164 - +
  • [10] Nienhuis R., 1973, US Patent, Patent No. [US3772576 A, 3772576]