Quantitative systems pharmacology in neuroscience: Novel methodologies and technologies

被引:9
作者
Bloomingdale, Peter [1 ]
Karelina, Tatiana [2 ]
Cirit, Murat [3 ]
Muldoon, Sarah F. [4 ]
Baker, Justin [5 ]
McCarty, William J. [6 ]
Geerts, Hugo [7 ]
Macha, Sreeraj [8 ]
机构
[1] Merck & Co Inc, Quantitat Pharmacol & Pharmacometr, Kenilworth, NJ 07033 USA
[2] InSysBio, Moscow, Russia
[3] Javelin Biotech Inc, Woburn, MA USA
[4] Univ Buffalo SUNY, Math Dept, CDSE Program, Neurosci Program, Buffalo, NY USA
[5] Harvard Med Sch, Boston, MA 02115 USA
[6] Skyhawk Therapeut, Waltham, MA USA
[7] Certara, QSP, Berwyn, PA USA
[8] Sanofi, Quantitat Pharmacol, Bridgewater, NJ USA
来源
CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY | 2021年 / 10卷 / 05期
关键词
D O I
10.1002/psp4.12607
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The development and application of quantitative systems pharmacology models in neuroscience have been modest relative to other fields, such as oncology and immunology, which may reflect the complexity of the brain. Technological and methodological advancements have enhanced the quantitative understanding of brain physiology and pathophysiology and the effects of pharmacological interventions. To maximize the knowledge gained from these novel data types, pharmacometrics modelers may need to expand their toolbox to include additional mathematical and statistical frameworks. A session was held at the 10th annual American Conference on Pharmacometrics (ACoP10) to highlight several recent advancements in quantitative and systems neuroscience. In this mini-review, we provide a brief overview of technological and methodological advancements in the neuroscience therapeutic area that were discussed during the session and how these can be leveraged with quantitative systems pharmacology modeling to enhance our understanding of neurological diseases. Microphysiological systems using human induced pluripotent stem cells (IPSCs), digital biomarkers, and large-scale imaging offer more clinically relevant experimental datasets, enhanced granularity, and a plethora of data to potentially improve the preclinical-to-clinical translation of therapeutics. Network neuroscience methodologies combined with quantitative systems models of neurodegenerative disease could help bridge the gap between cellular and molecular alterations and clinical end points through the integration of information on neural connectomics. Additional topics, such as the neuroimmune system, microbiome, single-cell transcriptomic technologies, and digital device biomarkers, are discussed in brief.
引用
收藏
页码:412 / 419
页数:8
相关论文
共 32 条
  • [1] Network inference, analysis, and modeling in systems biology
    Albert, Reke
    [J]. PLANT CELL, 2007, 19 (11) : 3327 - 3338
  • [2] NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia
    Anticevic, Alan
    Gancsos, Mark
    Murray, John D.
    Repovs, Grega
    Driesen, Naomi R.
    Ennis, Debra J.
    Niciu, Mark J.
    Morgan, Peter T.
    Surti, Toral S.
    Bloch, Michael H.
    Ramani, Ramachandran
    Smith, Mark A.
    Wang, Xiao-Jing
    Krystal, John H.
    Corlett, Philip R.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (41) : 16720 - 16725
  • [3] Disruption of Cortical Association Networks in Schizophrenia and Psychotic Bipolar Disorder
    Baker, Justin T.
    Holmes, Avram J.
    Masters, Grace A.
    Yeo, B. T. Thomas
    Krienen, Fenna
    Buckner, Randy L.
    Oenguer, Dost
    [J]. JAMA PSYCHIATRY, 2014, 71 (02) : 109 - 118
  • [4] Personalized brain network models for assessing structure-function relationships
    Bansal, Kanika
    Nakuci, Johan
    Muldoon, Sarah Feldt
    [J]. CURRENT OPINION IN NEUROBIOLOGY, 2018, 52 : 42 - 47
  • [5] Network neuroscience
    Bassett, Danielle S.
    Sporns, Olaf
    [J]. NATURE NEUROSCIENCE, 2017, 20 (03) : 353 - 364
  • [6] Boolean network modeling in systems pharmacology
    Bloomingdale, Peter
    Van Anh Nguyen
    Niu, Jin
    Mager, Donald E.
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2018, 45 (01) : 159 - 180
  • [7] Agent-Based Modeling in Systems Pharmacology
    Cosgrove, J.
    Butler, J.
    Alden, K.
    Read, M.
    Kumar, V.
    Cucurull-Sanchez, L.
    Timmis, J.
    Coles, M.
    [J]. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2015, 4 (11): : 615 - 629
  • [8] NetPyNE, a tool for data-driven multiscale modeling of brain circuits
    Dura-Bernal, Salvador
    Suter, Benjamin A.
    Gleeson, Padraig
    Cantarelli, Matteo
    Quintana, Adrian
    Rodriguez, Facundo
    Kedziora, David J.
    Chadderdon, George L.
    Kerr, Cliff C.
    Neymotin, Samuel A.
    McDougal, Robert A.
    Hines, Michael
    Shepherd, Gordon M. G.
    Lytton, William W.
    [J]. ELIFE, 2019, 8
  • [9] Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies
    Edington, Collin D.
    Chen, Wen Li Kelly
    Geishecker, Emily
    Kassis, Timothy
    Soenksen, Luis R.
    Bhushan, Brij M.
    Freake, Duncan
    Kirschner, Jared
    Maass, Christian
    Tsamandouras, Nikolaos
    Valdez, Jorge
    Cook, Christi D.
    Parent, Tom
    Snyder, Stephen
    Yu, Jiajie
    Suter, Emily
    Shockley, Michael
    Velazquez, Jason
    Velazquez, Jeremy J.
    Stockdale, Linda
    Papps, Julia P.
    Lee, Iris
    Vann, Nicholas
    Gamboa, Mario
    LaBarge, Matthew E.
    Zhong, Zhe
    Wang, Xin
    Boyer, Laurie A.
    Lauffenburger, Douglas A.
    Carrier, Rebecca L.
    Communal, Catherine
    Tannenbaum, Steven R.
    Stokes, Cynthia L.
    Hughes, David J.
    Rohatgi, Gaurav
    Trumper, David L.
    Cirit, Murat
    Griffith, Linda G.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [10] A new neuroinformatics approach to personalized medicine in neurology: The Virtual Brain
    Falcon, Maria I.
    Jirsa, Viktor
    Solodkin, Ana
    [J]. CURRENT OPINION IN NEUROLOGY, 2016, 29 (04) : 429 - 436