Compressive Strength and Microstructure of Alkali-Activated Blast Furnace Slag/Sewage Sludge Ash (GGBS/SSA) Blends Cured at Room Temperature

被引:29
|
作者
Tashima, M. M. [1 ]
Reig, L. [2 ]
Santini, M. A., Jr. [1 ]
Moraes, J. C. B. [1 ]
Akasaki, J. L. [1 ]
Paya, J. [3 ]
Borrachero, M. V. [3 ]
Soriano, L. [3 ]
机构
[1] Univ Estadual Paulista, UNESP, MAC UNESP Grp Pesquisa Mat Alternat Construcao, Campus Ilha Solteira, Sao Paulo, Brazil
[2] Univ Jaume 1, EMC, Castellon de La Plana, Spain
[3] Univ Politecn Valencia, GIQUIMA Grp, ICITECH Inst Ciencia & Tecnol Hormigon, Valencia, Spain
基金
巴西圣保罗研究基金会;
关键词
Sewage sludge ash; Waste management; Alkali-activated cement; Compressive strength; INCINERATED SEWAGE-SLUDGE; FLY-ASH; LIGHTWEIGHT AGGREGATE; SLAG MORTARS; WASTE GLASS; CEMENT; CONCRETE; BEHAVIOR; SSA; WORKABILITY;
D O I
10.1007/s12649-016-9659-1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the present work, ground granulated blast furnace slag (GGBS) and sewage sludge ash (SSA) blends were assessed for the production of alkali-activated pastes and mortars. Percentages of SSA to substitute GGBS ranged from 0 to 30 wt% and sodium concentrations of 6-10 mol kg(-1) were used for the activating solutions. Pastes and mortars were cured at 20 degrees C for up to 90 days. Raw materials were characterised by granulometric analysis, XRF, XRD, FTIR and SEM techniques. The replacement percentage of GGBS by SSA and the sodium hydroxide concentration of the alkaline activator were optimised to produce mortar with compressive strengths close to 30 MPa after 28 curing days at room temperature. Best results were obtained in samples blended with 20 wt% SSA activated with 6 mol kg(-1) NaOH solutions which, according to the XRD, FTIR and microscopic results, contained higher amounts of (N,C)-A-S-H gel. The potential use of SSA for the development of alternative cementitious materials at room temperature has been demonstrated.
引用
收藏
页码:1441 / 1451
页数:11
相关论文
共 50 条
  • [1] Compressive Strength and Microstructure of Alkali-Activated Blast Furnace Slag/Sewage Sludge Ash (GGBS/SSA) Blends Cured at Room Temperature
    M. M. Tashima
    L. Reig
    M. A. Santini
    J. C. B Moraes
    J. L. Akasaki
    J. Payá
    M. V. Borrachero
    L. Soriano
    Waste and Biomass Valorization, 2017, 8 : 1441 - 1451
  • [2] Compressive Strength and Microstructure of Carbide Slag and Alkali-Activated Blast Furnace Slag Pastes in China
    Li, Zhixin
    Xu, Kaidong
    Sun, Nan
    Wang, Jina
    Xue, Kaiwang
    Xu, Longyun
    Ren, Yi
    Yan, Zhenzhou
    Sima, Tongbao
    BUILDINGS, 2024, 14 (06)
  • [3] Compressive Strength and Microstructure Properties of Alkali-Activated Systems with Blast Furnace Slag, Desulfurization Slag, and Gypsum
    Cho, Bong-Suk
    Koo, Kyung-Mo
    Choi, Se-Jin
    ADVANCES IN CIVIL ENGINEERING, 2018, 2018
  • [4] Early strength development and hydration of alkali-activated blast furnace slag/fly ash blends
    Shi, C
    Day, RL
    ADVANCES IN CEMENT RESEARCH, 1999, 11 (04) : 189 - 196
  • [5] Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature
    Pan, Z.
    Tao, Z.
    Cao, Y. F.
    Wuhrer, R.
    Murphy, T.
    CEMENT & CONCRETE COMPOSITES, 2018, 86 : 9 - 18
  • [6] The Compressive Strength and Microstructure of Alkali-Activated Binary Cements Developed by Combining Ceramic Sanitaryware with Fly Ash or Blast Furnace Slag
    Cosa, Juan
    Soriano, Lourdes
    Victoria Borrachero, Maria
    Reig, Lucia
    Paya, Jordi
    Maria Monzo, Jose
    MINERALS, 2018, 8 (08)
  • [7] Sorptivity Ratio and Compressive Strength of Alkali-Activated Blast Furnace Slag Paste
    Qureshi, Mohd. Nadeem
    Ghosh, Somnath
    ADVANCES IN CIVIL ENGINEERING MATERIALS, 2014, 3 (01): : 238 - 255
  • [8] The role of dissolved rice husk ash in the development of binary blast furnace slag-sewage sludge ash alkali-activated mortars
    Istuque, Danilo Bordan
    Paya, Jordi
    Soriano, Lourdes
    Victoria Borrachero, Maria
    Monzo, Jose
    Tashima, Mauro Mitsuuchi
    JOURNAL OF BUILDING ENGINEERING, 2022, 52
  • [9] Alkali-activated concretes based on fly ash and blast furnace slag: Compressive strength, water absorption and chloride permeability
    Angulo-Ramirez, Daniela E.
    Valencia-Saavedra, William G.
    Mejia de Gutierrez, Ruby
    INGENIERIA E INVESTIGACION, 2020, 40 (02): : 72 - 80
  • [10] The strength of alkali-activated slag/fly ash mortar blends at ambient temperature
    Wardhono, Arie
    Law, David W.
    Strano, Anthony
    CIVIL ENGINEERING INNOVATION FOR A SUSTAINABLE, 2015, 125 : 650 - 656