Change Detection and Classification of Land Cover in Multispectral Satellite Imagery using Clustering of Sparse Approximations (CoSA) over Learned Feature Dictionaries

被引:0
作者
Moody, Daniela I. [1 ]
Brumby, Steven P. [1 ]
Rowland, Joel C. [1 ]
Altmann, Garrett L. [1 ]
Larson, Amy E. [1 ]
机构
[1] Los Alamos Natl Lab, MS D436, Los Alamos, NM 87545 USA
来源
2014 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR) | 2014年
关键词
learned dictionaries; feature dictionaries; Hebbian learning; sparse approximation; unsupervised classification; undercomplete dictionaries;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics to help separate geologic, vegetative, and hydrologic features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. Our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.
引用
收藏
页数:10
相关论文
共 24 条
[11]   MATCHING PURSUITS WITH TIME-FREQUENCY DICTIONARIES [J].
MALLAT, SG ;
ZHANG, ZF .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (12) :3397-3415
[12]  
Moody D. I., 2012, P SPIE SAT DAT COMPR
[13]  
Moody D. I., 2014, J APPL REMOTE SENSIN, V8
[14]  
Moody D. I., 2013, P SPIE ALG TECHN MUL, V8743
[15]  
Moody D. I., 2014, P SPIE SAT DAT COMPR, V9124
[16]  
Moody DI, 2012, IEEE APP IMG PAT
[17]  
Moody DI, 2011, CONF REC ASILOMAR C, P1888, DOI 10.1109/ACSSC.2011.6190351
[18]   THE INTERPRETATION OF SPECTRAL VEGETATION INDEXES [J].
MYNENI, RB ;
HALL, FG ;
SELLERS, PJ ;
MARSHAK, AL .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1995, 33 (02) :481-486
[19]  
Olshausen BA, 2003, IEEE IMAGE PROC, P41
[20]   Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J].
Olshausen, BA ;
Field, DJ .
NATURE, 1996, 381 (6583) :607-609