Nontrivial solutions of boundary value problems for second-order functional differential equations

被引:10
作者
Calamai, Alessandro [1 ]
Infante, Gennaro [2 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, Italy
[2] Univ Calabria, Dipartimento Matemat & Informat, I-87036 Cosenza, Italy
关键词
Fixed point index; Affine cone; Nontrivial solution; Retarded functional differential equation; Nonlocal boundary condition; POSITIVE SOLUTIONS;
D O I
10.1007/s10231-015-0487-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a theory for the existence of multiple nontrivial solutions for a class of perturbed Hammerstein integral equations. Our methodology, rather than to work directly in cones, is to utilize the theory of fixed point index on affine cones. This approach is fairly general and covers a class of nonlocal boundary value problems for functional differential equations. Some examples are given in order to illustrate our theoretical results.
引用
收藏
页码:741 / 756
页数:16
相关论文
共 41 条
[1]  
Agarwal RP, 2012, Nonoscillation theory of functional differential equations with applications
[2]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[3]  
[Anonymous], 1972, J. Funct. Anal, DOI DOI 10.1016/0022-1236(72)90074-2
[4]  
[Anonymous], 2000, Differential Integral Equations
[5]  
[Anonymous], 2000, DIFF EQNS DYNAM SYST
[6]  
[Anonymous], B GREEK MATH SOC
[7]  
Brown R.F., 1971, The Lefschetz Fixed Point Theorem
[8]  
Cabada A., TOPOL METHO IN PRESS
[9]   Nontrivial solutions of Hammerstein integral equations with reflections [J].
Cabada, Alberto ;
Infante, Gennaro ;
Fernandez Tojo, Fernando Adrian .
BOUNDARY VALUE PROBLEMS, 2013, :1-22
[10]  
CONTI R, 1967, B UNIONE MAT ITAL, V22, P135