FOM-inverse vector iteration method for computing a few smallest (largest) eigenvalues of pair (A,B)

被引:6
作者
Najafi, H. Saberi [1 ]
Refahi, A. [1 ]
机构
[1] Guilan Univ, Dept Math, Fac Sci, Rasht, Iran
关键词
eigenvalue; symmetric matrix; FOM; Krylov subspace; arnoldi; deflation;
D O I
10.1016/j.amc.2006.10.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article a new method for computing a few smallest (largest) eigenvalues of, symmetric positive definite problem, AX = lambda BX is presented. This is a kind of an inner-outer iteration method. The implementation of the algorithm has been tested by numerical examples, the results show that the algorithm converges fast and works with high accuracy. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:641 / 647
页数:7
相关论文
共 11 条
[1]  
Datta B.N., 1994, Numerical Linear Algebra and Applications
[2]   Weighted FOM and GMRES for solving nonsymmetric linear systems [J].
Essai, A .
NUMERICAL ALGORITHMS, 1998, 18 (3-4) :277-292
[3]  
LEHOUCQ RB, 1995, THESIS RIC U
[4]  
MORGAN B, 1996, MATH COMPUT, P1213
[5]   Weighted restarting method in the weighted Arnoldi algorithm for computing the eigenvalues of a nonsymmetric matrix [J].
Najafi, HS ;
Ghazvini, H .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (02) :1276-1287
[6]   A new restarting method in the Arnoldi algorithm for computing the eigenvalues of a nonsymmetric matrix [J].
Najafi, HS ;
Khaleghi, E .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (01) :59-71
[7]  
SAAD Y, 1981, MATH COMPUT, V37, P105, DOI 10.1090/S0025-5718-1981-0616364-6
[8]  
SAAD Y, 1996, ITERATIVE METHOD SPA
[9]  
SAAD Y, 1992, NUMERICAL SOLUTION L