A Finite Population Likelihood Ratio Test of the Sharp Null Hypothesis for Compliers

被引:0
作者
Loh, Wen Wei [1 ]
Richardson, Thomas S. [1 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
来源
UNCERTAINTY IN ARTIFICIAL INTELLIGENCE | 2015年
关键词
INFERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In a randomized experiment with noncompliance, scientific interest is often in testing whether the treatment exposure X has an effect on the final outcome Y. We propose a finite-population significance test of the sharp null hypothesis that X has no effect on Y, within the principal stratum of Compliers, using a generalized likelihood ratio test. We present a new algorithm that solves the corresponding integer programs.
引用
收藏
页码:523 / 532
页数:10
相关论文
共 20 条
[1]  
Angrist JD, 1996, J AM STAT ASSOC, V91, P444, DOI 10.2307/2291629
[2]  
Balke A., 1994, Uncertainty in Artificial Intelligence. Proceedings of the Tenth Conference (1994), P46
[3]  
Chickering DM, 1996, PROCEEDINGS OF THE THIRTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE EIGHTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE, VOLS 1 AND 2, P1269
[4]  
EFRON B, 1991, J AM STAT ASSOC, V86, P9, DOI 10.2307/2289707
[5]  
Fisher R. A., 1935, DESIGN EXPT
[6]   Decision theoretic foundations for causal reasoning [J].
Heckerman, D ;
Shachter, R .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1995, 3 :405-430
[7]   Robust, accurate confidence intervals with a weak instrument: quarter of birth and education [J].
Imbens, GW ;
Rosenbaum, PR .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2005, 168 :109-126
[8]  
Imbens GW, 1997, ANN STAT, V25, P305
[9]  
Johnson NL, 1969, Discrete Distributions
[10]  
Loh W W, 2013, UAI WORKSH APPR CAUS