Inter-Cohort Validation of SuStaIn Model for Alzheimer's Disease

被引:18
作者
Archetti, Damiano [1 ]
Young, Alexandra L. [2 ,3 ]
Oxtoby, Neil P. [3 ]
Ferreira, Daniel [4 ,5 ]
Martensson, Gustav [4 ]
Westman, Eric [4 ]
Alexander, Daniel C. [3 ]
Frisoni, Giovanni B. [6 ,7 ,8 ,9 ]
Redolfi, Alberto [1 ]
机构
[1] IRCCS Ist Ctr San Giovanni Dio Fatebenefratell, Lab Neuroinformat, Brescia, Italy
[2] Kings Coll London, Inst Psychiat, Dept Neuroimaging Psychol & Neurosci, London, England
[3] UCL Ctr Med Image Comp, Dept Comp Sci, London, England
[4] Karolinska Inst, Div Clin Geriatr, Dept Neurobiol Care Sci & Soc, Ctr Alzheimer Res, Stockholm, Sweden
[5] Mayo Clin, Dept Radiol, Rochester, MN USA
[6] Univ Hosp, Memory Clin, Geneva, Switzerland
[7] Univ Hosp, LANVIE Lab Neuroimaging Aging, Geneva, Switzerland
[8] Univ Geneva, Geneva, Switzerland
[9] IRCCS Ist Ctr San Giovanni Dio Fatebenefratell, Lab Alzheimers Neuroimaging & Epidemiol LANE, Brescia, Italy
来源
FRONTIERS IN BIG DATA | 2021年 / 4卷
基金
美国国家卫生研究院; 欧盟地平线“2020”; 加拿大健康研究院;
关键词
alzheiemer's disease; patient subtyping; patient staging; SuStain model; inter-cohort validation; MENTAL-STATE-EXAMINATION; INTRAOBSERVER REPRODUCIBILITY; NEURODEGENERATIVE DISEASES; HYPOTHETICAL MODEL; BIOMARKER CHANGES; CEREBRAL ATROPHY; DEFINED SUBTYPES; STRUCTURAL MRI; DEMENTIA; HETEROGENEITY;
D O I
10.3389/fdata.2021.661110
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Alzheimer's disease (AD) is a neurodegenerative disorder which spans several years from preclinical manifestations to dementia. In recent years, interest in the application of machine learning (ML) algorithms to personalized medicine has grown considerably, and a major challenge that such models face is the transferability from the research settings to clinical practice. The objective of this work was to demonstrate the transferability of the Subtype and Stage Inference (SuStaIn) model from well-characterized research data set, employed as training set, to independent less-structured and heterogeneous test sets representative of the clinical setting. The training set was composed of MRI data of 1043 subjects from the Alzheimer's disease Neuroimaging Initiative (ADNI), and the test set was composed of data from 767 subjects from OASIS, Pharma-Cog, and ViTA clinical datasets. Both sets included subjects covering the entire spectrum of AD, and for both sets volumes of relevant brain regions were derived from T1-3D MRI scans processed with Freesurfer v5.3 cross-sectional stream. In order to assess the predictive value of the model, subpopulations of subjects with stable mild cognitive impairment (MCI) and MCIs that progressed to AD dementia (pMCI) were identified in both sets. SuStaIn identified three disease subtypes, of which the most prevalent corresponded to the typical atrophy pattern of AD. The other SuStaIn subtypes exhibited similarities with the previously defined hippocampal sparing and limbic predominant atrophy patterns of AD. Subject subtyping proved to be consistent in time for all cohorts and the staging provided by the model was correlated with cognitive performance. Classification of subjects on the basis of a combination of SuStaIn subtype and stage, mini mental state examination and amyloid-beta(1-42) cerebrospinal fluid concentration was proven to predict conversion from MCI to AD dementia on par with other novel statistical algorithms, with ROC curves that were not statistically different for the training and test sets and with area under curve respectively equal to 0.77 and 0.76. This study proves the transferability of a SuStaIn model for AD from research data to less-structured clinical cohorts, and indicates transferability to the clinical setting.
引用
收藏
页数:13
相关论文
共 63 条
[1]   Clinical core of the Alzheimer's disease neuroimaging initiative: Progress and plans [J].
Aisen, Paul S. ;
Petersen, Ronald C. ;
Donohue, Michael C. ;
Gamst, Anthony ;
Raman, Rema ;
Thomas, Ronald G. ;
Walter, Sarah ;
Trojanowski, John Q. ;
Shaw, Leslie M. ;
Beckett, Laurel A. ;
Jack, Clifford R., Jr. ;
Jagust, William ;
Toga, Arthur W. ;
Saykin, Andrew J. ;
Morris, John C. ;
Green, Robert C. ;
Weiner, Michael W. .
ALZHEIMERS & DEMENTIA, 2010, 6 (03) :239-246
[2]   Multi-study validation of data-driven disease progression models to characterize evolution of biomarkers in Alzheimer's disease [J].
Archetti, Damiano ;
Ingala, Silvia ;
Venkatraghavan, Vikram ;
Wottschel, Viktor ;
Young, Alexandra L. ;
Bellio, Maura ;
Bron, Esther E. ;
Klein, Stefan ;
Barkhof, Frederik ;
Alexander, Daniel C. ;
Oxtoby, Neil P. ;
Frisonif, Giovanni B. ;
Redolfi, Alberto .
NEUROIMAGE-CLINICAL, 2019, 24
[3]   NEUROPATHOLOGICAL STAGING OF ALZHEIMER-RELATED CHANGES [J].
BRAAK, H ;
BRAAK, E .
ACTA NEUROPATHOLOGICA, 1991, 82 (04) :239-259
[4]   Enzyme-linked immunosorbent assay (Reprinted from Immunochemistry, pg 759-803, 1994) [J].
Butler, JE .
JOURNAL OF IMMUNOASSAY, 2000, 21 (2-3) :165-209
[5]   Tackling dementia globally: the Global Dementia Prevention Program (GloDePP) collaboration [J].
Chan, Kit Yee ;
Adeloye, Davies ;
Asante, Kwaku Poku ;
Calia, Clara ;
Campbell, Harry ;
Danso, Samuel O. ;
Juvekar, Sanjay ;
Luz, Saturnino ;
Mohan, Devi ;
Muniz-Terrera, Graciela ;
Nitrini, Ricardo ;
Noroozian, Maryam ;
Nulkar, Amit ;
Nyame, Solomon ;
Paralikar, Vasudeo ;
Rodriguez, Mario A. Parra ;
Poon, Adrienne N. ;
Reidpath, Daniel D. ;
Rudan, Igor ;
Stephan, Blossom C. M. ;
Su, TinTin ;
Wang, Huali ;
Watermeyer, Tam ;
Wilkinson, Heather ;
Yassuda, Monica Sanches ;
Yu, Xin ;
Ritchie, Craig .
JOURNAL OF GLOBAL HEALTH, 2019, 9 (02)
[6]   The need for harmonisation and innovation of neuropsychological assessment in neurodegenerative dementias in Europe: consensus document of the Joint Program for Neurodegenerative Diseases Working Group [J].
Costa, Alberto ;
Bak, Thomas ;
Caffarra, Paolo ;
Caltagirone, Carlo ;
Ceccaldi, Mathieu ;
Collette, Fabienne ;
Crutch, Sebastian ;
Della Sala, Sergio ;
Demonet, Jean Francois ;
Dubois, Bruno ;
Duzel, Emrah ;
Nestor, Peter ;
Papageorgiou, Sokratis G. ;
Salmon, Eric ;
Sikkes, Sietske ;
Tiraboschi, Pietro ;
van der Flier, Wiesje M. ;
Visser, Pieter Jelle ;
Cappa, Stefano F. .
ALZHEIMERS RESEARCH & THERAPY, 2017, 9
[7]   ATN status in amnestic and non-amnestic Alzheimer's disease and frontotemporal lobar degeneration [J].
Cousins, Katheryn A. Q. ;
Irwin, David J. ;
Wolk, David A. ;
Lee, Edward B. ;
Shaw, Leslie M. J. ;
Trojanowski, John Q. ;
Re, Fulvio ;
Gibbons, Garrett S. ;
Grossman, Murray ;
Phillips, Jeffrey S. .
BRAIN, 2020, 143 :2295-2311
[8]  
Delaby C., 2020, ALZHEIMERS DEMEN, V16, DOI [10.1002/alz.047209, DOI 10.1002/ALZ.047209]
[9]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[10]   Progression of regional grey matter atrophy in multiple sclerosis [J].
Eshaghi, Arman ;
Marinescu, Razvan V. ;
Young, Alexandra L. ;
Firth, Nicholas C. ;
Prados, Ferran ;
Cardoso, M. Jorge ;
Tur, Carmen ;
De Angelis, Floriana ;
Cawley, Niamh ;
Brownlee, Wallace J. ;
De Stefano, Nicola ;
Stromillo, M. Laura ;
Battaglini, Marco ;
Ruggieri, Serena ;
Gasperini, Claudio ;
Filippi, Massimo ;
Rocca, Maria A. ;
Rovira, Alex ;
Sastre-Garriga, Jaume ;
Geurts, Jeroen J. G. ;
Vrenken, Hugo ;
Wottschel, Viktor ;
Leurs, Cyra E. ;
Uitdehaag, Bernard ;
Pirpamer, Lukas ;
Enzinger, Christian ;
Ourselin, Sebastien ;
Wheeler-Kingshott, Claudia A. Gandini ;
Chard, Declan ;
Thompson, Alan J. ;
Barkhof, Frederik ;
Alexander, Daniel C. ;
Ciccarelli, Olga .
BRAIN, 2018, 141 :1665-1677