Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity

被引:133
作者
Myers, Timothy A. [1 ]
Scott, Ryan C. [2 ,3 ]
Zelinka, Mark D. [1 ]
Klein, Stephen A. [1 ]
Norris, Joel R. [2 ]
Caldwell, Peter M. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[3] Sci Syst & Applicat Inc, Hampton, VA USA
基金
美国能源部; 美国国家航空航天局;
关键词
OPTICAL DEPTH FEEDBACK; MARINE LOW-CLOUD; COUPLED MODEL; STRATOCUMULUS; MIDDLE; MODIS; METEOROLOGY; MECHANISMS; CUMULUS; LAYERS;
D O I
10.1038/s41558-021-01039-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Marine low clouds strongly cool the planet. How this cooling effect will respond to climate change is a leading source of uncertainty in climate sensitivity, the planetary warming resulting from CO2 doubling. Here, we observationally constrain this low cloud feedback at a near-global scale. Satellite observations are used to estimate the sensitivity of low clouds to interannual meteorological perturbations. Combined with model predictions of meteorological changes under greenhouse warming, this permits quantification of spatially resolved cloud feedbacks. We predict positive feedbacks from midlatitude low clouds and eastern ocean stratocumulus, nearly unchanged trade cumulus and a near-global marine low cloud feedback of 0.19 +/- 0.12 W m(-2) K-1 (90% confidence). These constraints imply a moderate climate sensitivity (similar to 3 K). Despite improved midlatitude cloud feedback simulation by several current-generation climate models, their erroneously positive trade cumulus feedbacks produce unrealistically high climate sensitivities. Conversely, models simulating erroneously weak low cloud feedbacks produce unrealistically low climate sensitivities.
引用
收藏
页码:501 / +
页数:10
相关论文
共 70 条
  • [1] MARINE BOUNDARY-LAYER STRUCTURE AND FRACTIONAL CLOUDINESS
    ALBRECHT, BA
    JENSEN, MP
    SYRETT, WJ
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995, 100 (D7) : 14209 - 14222
  • [2] [Anonymous], 2019, ERA5 5 GENERATION EC
  • [3] [Anonymous], 2020, CERES MONTHLY DAYTIM, DOI [10.5067/Terra-Aqua/CERES/FLUXBYCLDTYP-MONTH_L3.004A, DOI 10.5067/TERRA-AQUA/CERES/FLUXBYCLDTYP-MONTH_L3.004A]
  • [4] [Anonymous], 2015, MERRA-2 tavgM_2d_slv_Nx: 2d, Monthly mean, Time-Averaged, Single-Level, Assimilation, DOI DOI 10.5067/AP1B0BA5PD2K
  • [5] Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO2
    Block, K.
    Mauritsen, T.
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2013, 5 (04) : 676 - 691
  • [6] COSP Satellite simulation software for model assessment
    Bodas-Salcedo, A.
    Webb, M. J.
    Bony, S.
    Chepfer, H.
    Dufresne, J. -L.
    Klein, S. A.
    Zhang, Y.
    Marchand, R.
    Haynes, J. M.
    Pincus, R.
    John, V. O.
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2011, 92 (08) : 1023 - 1043
  • [7] Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models
    Bony, S
    Dufresne, JL
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (20) : 1 - 4
  • [8] Combining Emergent Constraints for Climate Sensitivity
    Bretherton, Christopher S.
    Caldwell, Peter M.
    [J]. JOURNAL OF CLIMATE, 2020, 33 (17) : 7413 - 7430
  • [9] Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases
    Bretherton, Christopher S.
    Blossey, Peter N.
    Jones, Christopher R.
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2013, 5 (02) : 316 - 337
  • [10] Bretherton CS, 1999, J CLIMATE, V12, P1990, DOI 10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO