Kirchhoff-Hardy Fractional Problems with Lack of Compactness

被引:82
作者
Fiscella, Alessio [1 ]
Pucci, Patrizia [2 ]
机构
[1] Univ Estadual Campinas, IMECC, Dept Matemat, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
[2] Univ Perugia, Dipartimento Matemat & Informat, Via Vanvitelli 1, I-06123 Perugia, Italy
关键词
Stationary Kirchhoff-Dirichlet Problems; Nonlocal p-Laplacian Operators; Hardy Coefficients; Critical Nonlinearities; Variational Methods; EXISTENCE; EQUATIONS; BREZIS;
D O I
10.1515/ans-2017-6021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the existence and the asymptotic behavior of nontrivial solutions for some classes of stationary Kirchhoff problems driven by a fractional integro-differential operator and involving a Hardy potential and different critical nonlinearities. In particular, we cover the delicate degenerate case, that is, when the Kirchhoff function M is zero at zero. To overcome the difficulties due to the lack of compactness as well as the degeneracy of the models, we have to make use of different approaches.
引用
收藏
页码:429 / 456
页数:28
相关论文
共 33 条
[1]  
[Anonymous], 1985, MONOGR STUD MATH
[2]   Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity [J].
Autuori, Giuseppina ;
Fiscella, Alessio ;
Pucci, Patrizia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 125 :699-714
[3]   Existence of entire solutions for a class of quasilinear elliptic equations [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03) :977-1009
[4]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[5]  
Bisci GM, 2015, ADV DIFFERENTIAL EQU, V20, P635
[6]  
Bogachev V. I., 2007, MEASURE THEORY, V2, DOI DOI 10.1007/978-3-540-34514-5
[7]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[8]  
Caffarelli LA, 2009, ICIAM 07: 6TH INTERNATIONAL CONGRESS ON INDUSTRIAL AND APPLIED MATHEMATICS, P43
[9]   Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations [J].
Caponi, Maicol ;
Pucci, Patrizia .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) :2099-2129
[10]   Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations [J].
Colasuonno, Francesca ;
Pucci, Patrizia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :5962-5974