Sharp global well-posedness for KDV and modified KDV on R and T

被引:503
|
作者
Colliander, J [1 ]
Keel, M
Staffilani, G
Takaoka, H
Tao, T
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[3] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[4] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
Korteweg-de Vries equation; nonlinear dispersive equations; bilinear estimates; multilinear harmonic analysis;
D O I
10.1090/S0894-0347-03-00421-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:705 / 749
页数:45
相关论文
共 50 条
  • [41] Global Well-Posedness and Scattering for the Defocusing, Mass-Critical Generalized KdV Equation
    Dodson B.
    Annals of PDE, 3 (1)
  • [42] On the well-posedness of the periodic KdV equation in high regularity classes
    Kappeler, Thomas
    Poeschel, Juergen
    HAMILTONIAN DYNAMICAL SYSTEMS AND APPLICATIONS, 2008, : 431 - +
  • [43] Well-posedness for KdV-type equations with quadratic nonlinearity
    Hirayama, Hiroyuki
    Kinoshita, Shinya
    Okamoto, Mamoru
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (03) : 811 - 835
  • [44] Local well-posedness for a fractional KdV-type equation
    Roger P. de Moura
    Ailton C. Nascimento
    Gleison N. Santos
    Journal of Evolution Equations, 2022, 22
  • [45] On the local well-posedness for some systems of coupled KdV equations
    Alvarez-Samaniego, Borys
    Carvajal, Xavier
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (02) : 692 - 715
  • [46] Well-Posedness for the ZK Equation in a Cylinder and on the Background of a KdV Soliton
    Linares, Felipe
    Pastor, Ademir
    Saut, Jean-Claude
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (09) : 1674 - 1689
  • [47] Well-Posedness for a Coupled System of Kawahara/KdV Type Equations
    Cezar I. Kondo
    Ronaldo B. Pes
    Applied Mathematics & Optimization, 2021, 84 : 2985 - 3024
  • [48] Local well-posedness of a nonlinear KdV-type equation
    Israwi, Samer
    Talhouk, Raafat
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (23-24) : 895 - 899
  • [49] Well-posedness for KdV-type equations with quadratic nonlinearity
    Hiroyuki Hirayama
    Shinya Kinoshita
    Mamoru Okamoto
    Journal of Evolution Equations, 2020, 20 : 811 - 835
  • [50] Local well-posedness for a fractional KdV-type equation
    De Moura, Roger P.
    Nascimento, Ailton C.
    Santos, Gleison N.
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (01)