Sharp global well-posedness for KDV and modified KDV on R and T

被引:503
|
作者
Colliander, J [1 ]
Keel, M
Staffilani, G
Takaoka, H
Tao, T
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[3] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[4] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
Korteweg-de Vries equation; nonlinear dispersive equations; bilinear estimates; multilinear harmonic analysis;
D O I
10.1090/S0894-0347-03-00421-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:705 / 749
页数:45
相关论文
共 50 条
  • [1] Global well-posedness for a coupled modified KdV system
    Corcho, Adan J.
    Panthee, Mahendra
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2012, 43 (01): : 27 - 57
  • [2] Global well-posedness for a coupled modified KdV system
    Adán J. Corcho
    Mahendra Panthee
    Bulletin of the Brazilian Mathematical Society, New Series, 2012, 43 : 27 - 57
  • [3] On Unconditional Well-Posedness of Modified KdV
    Kwon, Soonsik
    Oh, Tadahiro
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (15) : 3509 - 3534
  • [4] ON GLOBAL WELL-POSEDNESS OF THE MODIFIED KDV EQUATION IN MODULATION SPACES
    Oh, Tadahiro
    Wang, Yuzhao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (06) : 2971 - 2992
  • [5] LOCAL WELL-POSEDNESS OF THE COUPLED KDV-KDV SYSTEMS ON R
    Yang, Xin
    Zhang, Bing-Yu
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, : 1829 - 1871
  • [6] SHARP LOCAL WELL-POSEDNESS OF KDV TYPE EQUATIONS WITH DISSIPATIVE PERTURBATIONS
    Carvajal, Xavier
    Panthee, Mahendra
    QUARTERLY OF APPLIED MATHEMATICS, 2016, 74 (03) : 571 - 594
  • [7] Sharp well-posedness for the generalized KdV of order three on the half line
    Compaan, E.
    Tzirakis, N.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 402 (402)
  • [8] A SHARP CONDITION FOR THE WELL-POSEDNESS OF THE LINEAR KDV-TYPE EQUATION
    Akhunov, Timur
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (12) : 4207 - 4220
  • [9] WELL-POSEDNESS OF KDV TYPE EQUATIONS
    Carvajal, Xavier
    Panthee, Mahendra
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [10] Well-posedness for a perturbation of the KdV equation
    Carvajal, X.
    Esquivel, L.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (06):