Reconstruction and Validation of RefRec: A Global Model for the Yeast Molecular Interaction Network

被引:8
作者
Aho, Tommi [1 ]
Almusa, Henrikki [2 ]
Matilainen, Jukka [2 ]
Larjo, Antti [1 ]
Ruusuvuori, Pekka [1 ]
Aho, Kaisa-Leena [1 ]
Wilhelm, Thomas [3 ]
Lahdesmaki, Harri [1 ,4 ]
Beyer, Andreas [5 ]
Harju, Manu [1 ]
Chowdhury, Sharif [1 ]
Leinonen, Kalle [1 ]
Roos, Christophe [2 ]
Yli-Harja, Olli [1 ]
机构
[1] Tampere Univ Technol, Dept Signal Proc, FIN-33101 Tampere, Finland
[2] Medicel Ltd, Espoo, Finland
[3] Inst Food Res, Norwich NR4 7UA, Norfolk, England
[4] Aalto Univ, Dept Informat & Comp Sci, FIN-02150 Espoo, Finland
[5] Tech Univ Dresden, Ctr Biotechnol, Dresden, Germany
来源
PLOS ONE | 2010年 / 5卷 / 05期
基金
芬兰科学院; 英国生物技术与生命科学研究理事会;
关键词
BIOLOGY MARKUP LANGUAGE; SACCHAROMYCES-CEREVISIAE; GENOME ANNOTATION; DATABASE; ONTOLOGY; DELETION; ENZYMES; SYSTEM; GENES;
D O I
10.1371/journal.pone.0010662
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecular interaction networks establish all cell biological processes. The networks are under intensive research that is facilitated by new high-throughput measurement techniques for the detection, quantification, and characterization of molecules and their physical interactions. For the common model organism yeast Saccharomyces cerevisiae, public databases store a significant part of the accumulated information and, on the way to better understanding of the cellular processes, there is a need to integrate this information into a consistent reconstruction of the molecular interaction network. This work presents and validates RefRec, the most comprehensive molecular interaction network reconstruction currently available for yeast. The reconstruction integrates protein synthesis pathways, a metabolic network, and a protein-protein interaction network from major biological databases. The core of the reconstruction is based on a reference object approach in which genes, transcripts, and proteins are identified using their primary sequences. This enables their unambiguous identification and non-redundant integration. The obtained total number of different molecular species and their connecting interactions is similar to 67,000. In order to demonstrate the capacity of RefRec for functional predictions, it was used for simulating the gene knockout damage propagation in the molecular interaction network in similar to 590,000 experimentally validated mutant strains. Based on the simulation results, a statistical classifier was subsequently able to correctly predict the viability of most of the strains. The results also showed that the usage of different types of molecular species in the reconstruction is important for accurate phenotype prediction. In general, the findings demonstrate the benefits of global reconstructions of molecular interaction networks. With all the molecular species and their physical interactions explicitly modeled, our reconstruction is able to serve as a valuable resource in additional analyses involving objects from multiple molecular -omes. For that purpose, RefRec is freely available in the Systems Biology Markup Language format.
引用
收藏
页数:13
相关论文
共 51 条
  • [1] AHO T, 2006, P 4 TICSP WORKSH COM, P23
  • [2] High-throughput classification of yeast mutants for functional genomics using metabolic footprinting
    Allen, J
    Davey, HM
    Broadhurst, D
    Heald, JK
    Rowland, JJ
    Oliver, SG
    Kell, DB
    [J]. NATURE BIOTECHNOLOGY, 2003, 21 (06) : 692 - 696
  • [3] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [4] The ENZYME database in 2000
    Bairoch, A
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 304 - 305
  • [5] The Universal Protein Resource (UniProt)
    Bairoch, Amos
    Bougueleret, Lydie
    Altairac, Severine
    Amendolia, Valeria
    Auchincloss, Andrea
    Puy, Ghislaine Argoud
    Axelsen, Kristian
    Baratin, Delphine
    Blatter, Marie-Claude
    Boeckmann, Brigitte
    Bollondi, Laurent
    Boutet, Emmanuel
    Quintaje, Silvia Braconi
    Breuza, Lionel
    Bridge, Alan
    Saux, Virginie Bulliard-Le
    decastro, Edouard
    Ciampina, Luciane
    Coral, Danielle
    Coudert, Elisabeth
    Cusin, Isabelle
    David, Fabrice
    Delbard, Gwennaelle
    Dornevil, Dolnide
    Duek-Roggli, Paula
    Duvaud, Severine
    Estreicher, Anne
    Famiglietti, Livia
    Farriol-Mathis, Nathalie
    Ferro, Serenella
    Feuermann, Marc
    Gasteiger, Elisabeth
    Gateau, Alain
    Gehant, Sebastian
    Gerritsen, Vivienne
    Gos, Arnaud
    Gruaz-Gumowski, Nadine
    Hinz, Ursula
    Hulo, Chantal
    Hulo, Nicolas
    Innocenti, Alessandro
    James, Janet
    Jain, Eric
    Jimenez, Silvia
    Jungo, Florence
    Junker, Vivien
    Keller, Guillaume
    Lachaize, Corinne
    Lane-Guermonprez, Lydie
    Langendijk-Genevaux, Petra
    [J]. NUCLEIC ACIDS RESEARCH, 2008, 36 : D190 - D195
  • [6] New surveyor tools for charting microbial metabolic maps
    Breitling, Rainer
    Vitkup, Dennis
    Barrett, Michael P.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2008, 6 (02) : 156 - 161
  • [7] Flux coupling analysis of genome-scale metabolic network reconstructions
    Burgard, AP
    Nikolaev, EV
    Schilling, CH
    Maranas, CD
    [J]. GENOME RESEARCH, 2004, 14 (02) : 301 - 312
  • [8] Caspi R, 2008, NUCLEIC ACIDS RES, V36, pD623, DOI [10.1093/nar/gkm900, 10.1093/nar/gkt1103]
  • [9] Predicting genes for orphan metabolic activities using phylogenetic profiles
    Chen, LF
    Vitkup, D
    [J]. GENOME BIOLOGY, 2006, 7 (02)
  • [10] Enhancement of the chemical semantic web through the use of InChI identifiers
    Coles, SJ
    Day, NE
    Murray-Rust, P
    Rzepa, HS
    Zhang, Y
    [J]. ORGANIC & BIOMOLECULAR CHEMISTRY, 2005, 3 (10) : 1832 - 1834