MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia

被引:14
|
作者
Manera, Ana L. [1 ]
Dadar, Mahsa [1 ,2 ]
Van Swieten, John Cornelis [3 ]
Borroni, Barbara [4 ]
Sanchez-Valle, Raquel [5 ]
Moreno, Fermin [6 ]
Laforce, Robert, Jr. [7 ,8 ]
Graff, Caroline [9 ]
Synofzik, Matthis [10 ,11 ]
Galimberti, Daniela [12 ,13 ]
Rowe, James Benedict [14 ]
Masellis, Mario [15 ]
Tartaglia, Maria Carmela [16 ]
Finger, Elizabeth [17 ]
Vandenberghe, Rik [18 ]
de Mendonca, Alexandre [19 ]
Tagliavini, Fabrizio [20 ]
Santana, Isabel [21 ]
Butler, Christopher R. [22 ]
Gerhard, Alex [23 ]
Danek, Adrian [24 ,25 ]
Levin, Johannes [24 ,25 ]
Otto, Markus [26 ]
Frisoni, Giovanni [13 ,27 ,28 ,29 ]
Ghidoni, Roberta [30 ]
Sorbi, Sandro [31 ]
Rohrer, Jonathan Daniel [32 ]
Ducharme, Simon [1 ,33 ]
Collins, D. Louis [1 ]
机构
[1] McGill Univ, Montreal Neurol Inst & Hosp, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
[2] Laval Univ, Radiol & Nucl Med, Quebec City, PQ, Canada
[3] Erasmus MC, Neurol, Rotterdam, Netherlands
[4] Univ Brescia, Ctr Ageing Brain & Neurodegenerat Disorders, Dept Clin & Expt Sci, Brescia, Italy
[5] Univ Barcelona, Hosp Clin, Inst Invest Biomed August Pi I Sunyer, Neurol Serv,Alzheimers Dis & Other Cognit Disorde, Barcelona, Spain
[6] Donostia Univ Hosp, Dept Neurol, Cognit Disorders Unit, San Sebastian, Spain
[7] Univ Laval, Clin Interdisciplinaire Memoire, Dept Sci Neurol, CHU Quebec, Quebec City, PQ, Canada
[8] Univ Laval, Fac Med, Quebec City, PQ, Canada
[9] Karolinska Univ Hosp Huddinge, Dept Geriatr Med, Stockholm, Sweden
[10] Univ Tubingen, Hertie Inst Clin Brain Res, Dept Neurodegenerat Dis, Tubingen, Germany
[11] Univ Tubingen, Ctr Neurol, Tubingen, Germany
[12] Fdn IRCCS CaGranda Osped Maggiore Policlin, Neurodegenerat Dis Unit, Milan, Italy
[13] IRCCS Ist Ctr San Giovanni Dio Fatebenefratelli, LANE Lab Alzheimers Neuroimaging & Epidemiol, Brescia, Italy
[14] Univ Cambridge, Dept Clin Neurosci, Cambridge, England
[15] Sunnybrook Hlth Sci Ctr, Sunnybrook Res Inst, Toronto, ON, Canada
[16] Toronto Western Hosp, Tanz Ctr Res Neurodegenerat Dis, Toronto, ON, Canada
[17] Univ Western Ontario, Dept Clin Neurol Sci, London, ON, Canada
[18] Katholieke Univ Leuven, Lab Cognit Neurol, Dept Neurosci, Leuven, Belgium
[19] Univ Lisbon, Fac Med, Lisbon, Portugal
[20] Fdn Ist Ricovero & Cura Carattere Sci Ist Neurol, Neurol & Neuropathol, Milan, Italy
[21] Ctr Hosp & Univ Coimbra, Neurol Dept, Coimbra, Portugal
[22] Univ Oxford, Dept Clin Neurol, Oxford, England
[23] Univ Manchester, Inst Brain Behav & Mental Hlth, Manchester, Lancs, England
[24] Ludwig Maximilians Univ Munchen, Neurolog Klin & Poliklin, Munich, Germany
[25] German Ctr Neurodegenerat Dis DZNE, Munich, Germany
[26] Univ Hosp Ulm, Dept Neurol, Ulm, Germany
[27] Univ Hosp, Memory Clin, Geneva, Switzerland
[28] Univ Hosp, LANVIE Lab Neuroimaging Aging, Geneva, Switzerland
[29] Univ Geneva, Geneva, Switzerland
[30] IRCCS Ist Ctr San Giovanni Dio Fatebenefratelli, Mol Markers Lab, Brescia, Italy
[31] Univ Florence, Dept Neurosci Psychol Drug Res & Child Hlth, Florence, Italy
[32] UCL Inst Neurol, Dementia Res Ctr, London, England
[33] Douglas Mental Hlth Univ Inst, Dept Psychiat, Montreal, PQ, Canada
来源
基金
加拿大创新基金会; 美国国家卫生研究院;
关键词
ALZHEIMERS-DISEASE; DIFFERENTIAL-DIAGNOSIS; LOBAR DEGENERATION; ATROPHY; CRITERIA; CLASSIFICATION; REGISTRATION; CONSENSUS; ACCURACY; PATTERNS;
D O I
10.1136/jnnp-2020-324106
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction Structural brain imaging is paramount for the diagnosis of behavioural variant of frontotemporal dementia (bvFTD), but it has low sensitivity leading to erroneous or late diagnosis. Methods A total of 515 subjects from two different bvFTD cohorts (training and independent validation cohorts) were used to perform voxel-wise morphometric analysis to identify regions with significant differences between bvFTD and controls. A random forest classifier was used to individually predict bvFTD from deformation-based morphometry differences in isolation and together with semantic fluency. Tenfold cross validation was used to assess the performance of the classifier within the training cohort. A second held-out cohort of genetically confirmed bvFTD cases was used for additional validation. Results Average 10-fold cross-validation accuracy was 89% (82% sensitivity, 93% specificity) using only MRI and 94% (89% sensitivity, 98% specificity) with the addition of semantic fluency. In the separate validation cohort of definite bvFTD, accuracy was 88% (81% sensitivity, 92% specificity) with MRI and 91% (79% sensitivity, 96% specificity) with added semantic fluency scores. Conclusion Our results show that structural MRI and semantic fluency can accurately predict bvFTD at the individual subject level within a completely independent validation cohort coming from a different and independent database.
引用
收藏
页码:608 / 616
页数:9
相关论文
共 50 条
  • [1] Tractography versus volumetry in the diagnosis of behavioural variant frontotemporal dementia
    Santillo, Alexander
    Martensson, Johanna
    Lindberg, Olof
    Nilsson, Markus
    Manzouri, A.
    Landqvist, Waldo
    van Westen, Danielle
    Wahlund, Lars-Olof
    Latt, Jimmy
    Nilsson, Christer
    DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2012, 33 : 134 - 134
  • [2] Personality in behavioural variant Frontotemporal Dementia
    Pose, Mariangeles
    Gleichgerrcht, Ezequiel
    Lopez, Pablo
    Teresa, Torralva
    Torrente, Fernando
    Cetkovich, Marcelo
    Manes, Facundo F.
    Torralva, Teresa
    DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2012, 33 : 247 - 248
  • [3] Social cognition differentiates phenocopy syndrome of behavioural variant frontotemporal dementia from behavioural variant frontotemporal dementia
    van Engelen, Marie-Paule E.
    Louwers, Paulette
    Fieldhouse, Jay L. P.
    Gossink, Flora T.
    de Boer, Sterre C. M.
    Dols, Annemieke
    Scheltens, Philip
    Schouws, Sigfried N. T. M.
    Pijnenburg, Yolande A. L.
    Vijverberg, Everard G. B.
    Krudop, Welmoed A.
    PSYCHOGERIATRICS, 2024, 24 (04) : 741 - 751
  • [4] Data-driven staging of genetic frontotemporal dementia using multi-modal MRI
    McCarthy, Jillian
    Borroni, Barbara
    Sanchez-Valle, Raquel
    Moreno, Fermin
    Laforce, Robert, Jr.
    Graff, Caroline
    Synofzik, Matthis
    Galimberti, Daniela
    Rowe, James B.
    Masellis, Mario
    Tartaglia, Maria Carmela
    Finger, Elizabeth
    Vandenberghe, Rik
    de Mendonca, Alexandre
    Tagliavini, Fabrizio
    Santana, Isabel
    Butler, Chris
    Gerhard, Alex
    Danek, Adrian
    Levin, Johannes
    Otto, Markus
    Frisoni, Giovanni
    Ghidoni, Roberta
    Sorbi, Sandro
    Jiskoot, Lize C.
    Seelaar, Harro
    van Swieten, John C.
    Rohrer, Jonathan D.
    Iturria-Medina, Yasser
    Ducharme, Simon
    HUMAN BRAIN MAPPING, 2022, 43 (06) : 1821 - 1835
  • [5] Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management
    Piguet, Olivier
    Hornberger, Michael
    Mioshi, Eneida
    Hodges, John R.
    LANCET NEUROLOGY, 2011, 10 (02): : 162 - 172
  • [6] Behavioural Variant Frontotemporal Dementia: Recent Advances in the Diagnosis and Understanding of the Disorder
    Ahmed, Rebekah M.
    Hodges, John R.
    Piguet, Olivier
    FRONTOTEMPORAL DEMENTIAS: EMERGING MILESTONES OF THE 21ST CENTURY, 2021, 1281 : 1 - 15
  • [7] BEHAVIOURAL VARIANT FRONTOTEMPORAL DEMENTIA: A CASE REPORT
    Ng, Yin Ping
    Teh, Ewe Eow
    ASEAN JOURNAL OF PSYCHIATRY, 2013, 14 (01): : 71 - 75
  • [8] Neural Timing in Behavioural variant Frontotemporal Dementia
    Downey, Laura
    Nicholas, J.
    Golden, H. L.
    Mahoney, C. J.
    Warren, J. D.
    Crutch, S. J.
    DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2012, 33 : 189 - 189
  • [9] The Principle of Autonomy and Behavioural Variant Frontotemporal Dementia
    Veljko Dubljević
    Journal of Bioethical Inquiry, 2020, 17 : 271 - 282
  • [10] Behavioural Variant of Frontotemporal Dementia or Mood Disorder?
    Mesquita, B.
    Paulino, S.
    Fraga, A.
    Facucho-Oliveira, J.
    Espada-Santos, P.
    Albuquerque, M.
    Costa, M.
    EUROPEAN PSYCHIATRY, 2022, 65 : S453 - S454