Scale dependence of canopy trait distributions along a tropical forest elevation gradient

被引:63
|
作者
Asner, Gregory P. [1 ]
Martin, Roberta E. [1 ]
Anderson, Christopher B. [1 ]
Kryston, Katherine [1 ]
Vaughn, Nicholas [1 ]
Knapp, David E. [1 ]
Bentley, Lisa Patrick [2 ]
Shenkin, Alexander [2 ]
Salinas, Norma [2 ,3 ]
Sinca, Felipe [1 ]
Tupayachi, Raul [1 ]
Huaypar, Katherine Quispe [4 ]
Pillco, Milenka Montoya [4 ]
Alvarez, Flor Delis Ccori [4 ]
Diaz, Sandra [5 ,6 ]
Enquist, Brian J. [7 ,8 ]
Malhi, Yadvinder [2 ]
机构
[1] Carnegie Inst Sci, Dept Global Ecol, 260 Panama St, Stanford, CA 94305 USA
[2] Univ Oxford, Environm Change Inst, Sch Geog & Environm, Oxford OX1 3QY, England
[3] Pontificia Univ Catolica Peru, Secc Quim, Ave Univ 1801, Lima 32, Peru
[4] Univ Nacl San Antonio Abad Cusco, Ave Cultura,Nro 733, Cuzco, Peru
[5] Univ Nacl Cordoba, Inst Multidisciplinario Biol Vegetal IMBIV, CONICET, Casilla Correo 495, RA-5000 Cordoba, Argentina
[6] Univ Nacl Cordoba, FCEFyN, Casilla Correo 495, RA-5000 Cordoba, Argentina
[7] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA
[8] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA
基金
美国国家科学基金会; 英国自然环境研究理事会; 欧洲研究理事会;
关键词
canopy chemistry; Carnegie Airborne Observatory; Peru; plant functional traits; trait distributions; trait scaling; NET PRIMARY PRODUCTIVITY; IMAGING SPECTROSCOPY; FUNCTIONAL DIVERSITY; CHEMICAL TRAITS; CLOUD FORESTS; LEAF MASS; AREA LMA; NUTRIENT; CARBON; VEGETATION;
D O I
10.1111/nph.14068
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Average responses of forest foliar traits to elevation are well understood, but far less is known about trait distributional responses to elevation at multiple ecological scales. This limits our understanding of the ecological scales at which trait variation occurs in response to environmental drivers and change. We analyzed and compared multiple canopy foliar trait distributions using field sampling and airborne imaging spectroscopy along an Andes-to-Amazon elevation gradient. Field-estimated traits were generated from three community-weighting methods, and remotely sensed estimates of traits were made at three scales defined by sampling grain size and ecological extent. Field and remote sensing approaches revealed increases in average leaf mass per unit area (LMA), water, nonstructural carbohydrates (NSCs) and polyphenols with increasing elevation. Foliar nutrients and photosynthetic pigments displayed little to no elevation trend. Sample weighting approaches had little impact on field-estimated trait responses to elevation. Plot representativeness of trait distributions at landscape scales decreased with increasing elevation. Remote sensing indicated elevation-dependent increases in trait variance and distributional skew. Multiscale invariance of LMA, leaf water and NSC mark these traits as candidates for tracking forest responses to changing climate. Trait-based ecological studies can be greatly enhanced with multiscale studies made possible by imaging spectroscopy.
引用
收藏
页码:973 / 988
页数:16
相关论文
共 50 条
  • [21] Changes in the stoichiometry of Castanopsis fargesii along an elevation gradient in a Chinese subtropical forest
    Liu, Danping
    Zheng, Dexiang
    Xu, Yaoyao
    Chen, Yifei
    Wang, Hesong
    Wang, Ku
    Liao, Xiaoli
    Chen, Changxiong
    Xia, Jiangjiang
    Jin, Shaofei
    PEERJ, 2021, 9
  • [22] Strong intraspecific trait variation in a tropical dominant tree species along an elevational gradient
    Xu, Wumei
    Tomlinson, Kyle W.
    Li, Jie
    PLANT DIVERSITY, 2020, 42 (01) : 1 - 6
  • [23] Minimum temperature drives community leaf trait variation in secondary montane forests along a 3000-m elevation gradient in the tropical Andes
    Llerena-Zambrano, Melissa
    Ordonez, Jenny C.
    Llambi, Luis D.
    van der Sande, Masha
    Pinto, Esteban
    Salazar, Laura
    Cuesta, Francisco
    PLANT ECOLOGY & DIVERSITY, 2021, 14 (1-2) : 47 - 63
  • [24] Intraspecific leaf trait variability along a boreal-to-tropical community diversity gradient
    Bastias, Cristina C.
    Fortunel, Claire
    Valladares, Fernando
    Baraloto, Christopher
    Benavides, Raquel
    Cornwell, William
    Markesteijn, Lars
    de Oliveira, Alexandre A.
    Sansevero, Jeronimo B. B.
    Vaz, Marcel C.
    Kraft, Nathan J. B.
    PLOS ONE, 2017, 12 (02):
  • [25] Evolutionary heritage shapes tree distributions along an Amazon-to-Andes elevation gradient
    Griffiths, Andy R.
    Silman, Miles R.
    Farfan Rios, William
    Feeley, Kenneth J.
    Garcia Cabrera, Karina
    Meir, Patrick
    Salinas, Norma
    Dexter, Kyle G.
    BIOTROPICA, 2021, 53 (01) : 38 - 50
  • [26] Diversity of dry forest epiphytes along a gradient of human disturbance in the tropical Andes
    Werner, Florian A.
    Gradstein, S. Robbert
    JOURNAL OF VEGETATION SCIENCE, 2009, 20 (01) : 59 - 68
  • [27] Upward expansion of fire-adapted grasses along a warming tropical elevation gradient
    Angelo, Courtney L.
    Daehler, Curtis C.
    ECOGRAPHY, 2013, 36 (05) : 551 - 559
  • [28] Habitat niches of bird species along a recovery gradient in the Choco tropical forest
    Falconi-Lopez, Ana
    Mitesser, Oliver
    Schaefer, H. Martin
    Bluethgen, Nico
    Busse, Annika
    Feldhaar, Heike
    Freile, Juan
    Gelis, Rudy
    Grella, Nina
    Heibl, Christoph
    Kortmann, Mareike
    Newell, Felicity L.
    Rabl, Dominik
    Schleuning, Matthias
    Seibold, Sebastian
    Sekercioglu, Cagan H.
    Tinoco, Boris A.
    Tremlett, Constance J.
    Mueller, Joerg
    Donoso, David A.
    ECOLOGICAL INDICATORS, 2024, 166
  • [29] Cross-scale drivers of plant trait distributions in a fragmented forest landscape
    Jin, Yi
    Didham, Raphael K.
    Yuan, Jinfeng
    Hu, Guang
    Yu, Jingjing
    Zheng, Shilu
    Yu, Mingjian
    ECOGRAPHY, 2020, 43 (03) : 467 - 479
  • [30] Shifts in plant functional groups along an aridity gradient in a tropical dry forest
    de Oliveira, Ana Claudia Pereira
    Nunes, Alice
    Oliveira, Maria Alexandra
    Oliveira, Rafael S.
    Rodrigues, Renato Garcia
    Branquinho, Cristina
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 924