Explicit factorization of the Vandermonde matrix

被引:51
作者
Oruç, H
Phillips, GM
机构
[1] Dokuz Eylul Univ, Fen Edebiyat Fak, Matemat Bolumil, TR-35160 Izmir, Turkey
[2] Univ St Andrews, Inst Math, St Andrews KY16 9SS, Fife, Scotland
关键词
Vandermonde matrix; symmetric function; triangular and l-banded factorization;
D O I
10.1016/S0024-3795(00)00124-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The LU factorization of the Vandermonde matrix is obtained, using complete symmetric functions, and the lower and upper triangular matrices are, in turn, factorized into 1-banded matrices, thus expressing the Vandermonde matrix as a product of 1-banded matrices. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:113 / 123
页数:11
相关论文
共 13 条
[1]   SOLUTION OF VANDERMONDE SYSTEMS OF EQUATIONS [J].
BJORCK, A ;
PEREYRA, V .
MATHEMATICS OF COMPUTATION, 1970, 24 (112) :893-&
[2]   ALGORITHMS FOR CONFLUENT VANDERMONDE SYSTEMS [J].
BJORCK, A ;
ELFVING, T .
NUMERISCHE MATHEMATIK, 1973, 21 (02) :130-137
[3]   SOME PROPERTIES OF TOTALLY POSITIVE MATRICES [J].
CRYER, CW .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 15 (01) :1-25
[4]   A MATRICIAL DESCRIPTION OF NEVILLE ELIMINATION WITH APPLICATIONS TO TOTAL POSITIVITY [J].
GASCA, M ;
PENA, JM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 202 :33-53
[5]  
Golub G.H., 2013, MATRIX COMPUTATIONS
[6]  
Goodman TNT, 1996, MATH APPL, V359, P157
[7]   Generalized binomial coefficients and the subset-subspace problem [J].
Konvalina, J .
ADVANCES IN APPLIED MATHEMATICS, 1998, 21 (02) :228-240
[8]   Fast algorithms of Bjorck-Pereyra type for solving Cauchy-Vandermonde linear systems [J].
Martinez, JJ ;
Pena, JM .
APPLIED NUMERICAL MATHEMATICS, 1998, 26 (03) :343-352
[9]   Factorizations of Cauchy-Vandermonde matrices [J].
Martinez, JJ ;
Pena, JM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 284 (1-3) :229-237
[10]  
Milne-Thomson L. M., 1951, The calculus of finite differences