A small microring array that performs large complex-valued matrix-vector multiplication

被引:42
作者
Cheng, Junwei [1 ]
Zhao, Yuhe [1 ]
Zhang, Wenkai [1 ]
Zhou, Hailong [1 ,2 ,3 ]
Huang, Dongmei [3 ,4 ]
Zhu, Qing [5 ]
Guo, Yuhao [5 ]
Xu, Bo [5 ]
Dong, Jianji [1 ]
Zhang, Xinliang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Hong Kong Polytech Univ, Photon Res Ctr, Dept Elect & Informat Engn, Hong Kong 999077, Peoples R China
[3] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[4] Hong Kong Polytech Univ, Photon Res Ctr, Dept Elect Engn, Hong Kong 999077, Peoples R China
[5] Huawei Technol, Inst Strateg Res, Shenzhen 518129, Peoples R China
基金
中国国家自然科学基金;
关键词
Photonic matrix-vector multiplication; Complex-valued computing; Microring array; Signal; image processing; PARALLEL; IMPLEMENTATION; DESIGN;
D O I
10.1007/s12200-022-00009-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As an important computing operation, photonic matrix-vector multiplication is widely used in photonic neutral networks and signal processing. However, conventional incoherent matrix-vector multiplication focuses on real-valued operations, which cannot work well in complex-valued neural networks and discrete Fourier transform. In this paper, we propose a systematic solution to extend the matrix computation of microring arrays from the real-valued field to the complex-valued field, and from small-scale (i.e., 4 x 4) to large-scale matrix computation (i.e., 16 x 16). Combining matrix decomposition and matrix partition, our photonic complex matrix-vector multiplier chip can support arbitrary large-scale and complex-valued matrix computation. We further demonstrate Walsh-Hardmard transform, discrete cosine transform, discrete Fourier transform, and image convolutional processing. Our scheme provides a path towards breaking the limits of complex-valued computing accelerator in conventional incoherent optical architecture. More importantly, our results reveal that an integrated photonic platform is of huge potential for large-scale, complex-valued, artificial intelligence computing and signal processing.
引用
收藏
页数:15
相关论文
共 43 条
[1]  
Andrushia AD, 2018, L N COMPUT VIS BIOME, V25, P21, DOI 10.1007/978-3-319-61316-1_2
[2]   Unscrambling light-automatically undoing strong mixing between modes [J].
Annoni, Andrea ;
Guglielmi, Emanuele ;
Carminati, Marco ;
Ferrari, Giorgio ;
Sampietro, Marco ;
Miller, David A. B. ;
Melloni, Andrea ;
Morichetti, Francesco .
LIGHT-SCIENCE & APPLICATIONS, 2017, 6 :e17110-e17110
[3]   OPTICAL MATRIX MATRIX MULTIPLIER BASED ON OUTER PRODUCT DECOMPOSITION [J].
ATHALE, RA ;
COLLINS, WC .
APPLIED OPTICS, 1982, 21 (12) :2089-2090
[4]   ELECTROOPTICAL MATRIX MULTIPLICATION USING THE TWOS COMPLEMENT ARITHMETIC FOR IMPROVED ACCURACY [J].
BOCKER, RP ;
CLAYTON, SR ;
BROMLEY, K .
APPLIED OPTICS, 1983, 22 (13) :2019-2021
[5]   Programmable photonic circuits [J].
Bogaerts, Wim ;
Perez, Daniel ;
Capmany, Jose ;
Miller, David A. B. ;
Poon, Joyce ;
Englund, Dirk ;
Morichetti, Francesco ;
Melloni, Andrea .
NATURE, 2020, 586 (7828) :207-216
[6]   Universal linear optics [J].
Carolan, Jacques ;
Harrold, Christopher ;
Sparrow, Chris ;
Martin-Lopez, Enrique ;
Russell, Nicholas J. ;
Silverstone, Joshua W. ;
Shadbolt, Peter J. ;
Matsuda, Nobuyuki ;
Oguma, Manabu ;
Itoh, Mikitaka ;
Marshall, Graham D. ;
Thompson, Mark G. ;
Matthews, Jonathan C. F. ;
Hashimoto, Toshikazu ;
O'Brien, Jeremy L. ;
Laing, Anthony .
SCIENCE, 2015, 349 (6249) :711-716
[7]   NEW OPTICAL MATRIX-VECTOR MULTIPLIER [J].
CARTWRIGHT, S .
APPLIED OPTICS, 1984, 23 (11) :1683-1684
[8]   Optimal design for universal multiport interferometers [J].
Clements, William R. ;
Humphreys, Peter C. ;
Metcalf, Benjamin J. ;
Kolthammer, W. Steven ;
Walmsley, Ian A. .
OPTICA, 2016, 3 (12) :1460-1465
[9]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+
[10]   All-optical spiking neurosynaptic networks with self-learning capabilities [J].
Feldmann, J. ;
Youngblood, N. ;
Wright, C. D. ;
Bhaskaran, H. ;
Pernice, W. H. P. .
NATURE, 2019, 569 (7755) :208-+