TRANSITION PHENOMENA FOR LADDER EPOCHS OF RANDOM WALKS WITH SMALL NEGATIVE DRIFT

被引:0
作者
Wachtel, Vitali [1 ]
机构
[1] Univ Munich, Math Inst, D-80333 Munich, Germany
关键词
Random walk; ladder epoch; transition phenomena; LARGE DEVIATIONS; LIMIT-THEOREMS; FLUCTUATION; SUMS;
D O I
10.1239/aap/1261669592
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a family of random walks {S-(a)} satisfying E S-1((a)) = -a < 0, we consider ladder epochs tau((a)) = min{k >= 1: S-k((a)) < 0}. We study the asymptotic behaviour, as a -> 0, of P(tau((a)) > n) in the case when n = n(a) -> infinity. As a consequence, we also obtain the growth rates of the moments of tau((a)).
引用
收藏
页码:1189 / 1214
页数:26
相关论文
共 17 条
[1]   Some asymptotic results for transient random walks [J].
Bertoin, J ;
Doney, RA .
ADVANCES IN APPLIED PROBABILITY, 1996, 28 (01) :207-226
[2]   CONDITIONAL LIMIT-THEOREMS FOR ASYMPTOTICALLY STABLE RANDOM-WALKS [J].
DONEY, RA .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (03) :351-360
[4]  
EMBRECHTS P, 1982, J AUST MATH SOC A, V32, P412, DOI 10.1017/S1446788700024976
[5]  
Feller W., 1971, An Introduction to Probability Theory and its Applications - volume two, VII
[6]   MOMENTS AND LIMIT DISTRIBUTIONS OF SOME FIRST PASSAGE TIMES [J].
GUT, A .
ANNALS OF PROBABILITY, 1974, 2 (02) :277-308
[7]   FIRST PASSAGE TIME DENSITY FOR HOMOGENEOUS SKIP-FREE WALKS ON CONTINUUM [J].
KEILSON, J .
ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (03) :1003-&
[8]   On the mean value of the ladder epoch for random walks with a small drift [J].
Lotov, V. I. .
IZVESTIYA MATHEMATICS, 2006, 70 (06) :1225-1232
[9]  
Nagaev A. V., 1969, Izv. Akad. Nauk UzSSR, Ser. Fiz.- Mat. Nauk, V6, P17
[10]   LARGE DEVIATIONS OF SUMS OF INDEPENDENT RANDOM-VARIABLES [J].
NAGAEV, SV .
ANNALS OF PROBABILITY, 1979, 7 (05) :745-789