AN EXOTIC DELIGNE-LANGLANDS CORRESPONDENCE FOR SYMPLECTIC GROUPS

被引:45
作者
Kato, Syu [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
基金
日本学术振兴会;
关键词
REPRESENTATIONS; CLOSURES; ALGEBRA;
D O I
10.1215/00127094-2009-028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = Sp(2n, C) be a complex symplectic group. We introduce a (G x (Cx)(l+1))-veriety N-e which we call the l-exotic nilpotent cone. Then, we realize the Hecke algebra H of type C-n((1)) with three parameters via equivariant algebraic K-theory in terms of the geometry of N-2. This enables its to establish a Deligne-Langlands-type classification of simple H-modules under a mild assumption on parameters. As applications, the present a character formula and multiplicity formulas of H-modules.
引用
收藏
页码:305 / 371
页数:67
相关论文
共 39 条
[1]   Orbit closures in the enhanced nilpotent cone [J].
Achar, Pramod N. ;
Henderson, Anthony .
ADVANCES IN MATHEMATICS, 2008, 219 (01) :27-62
[2]  
[Anonymous], ACTA MATH IN PRESS
[3]  
[Anonymous], REPRESENT THEORY
[4]   LINEARIZING CERTAIN REDUCTIVE GROUP-ACTIONS [J].
BASS, H ;
HABOUSH, W .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 292 (02) :463-482
[5]  
Bernstein J., 1994, Lecture Notes in Mathematics, V1578
[6]  
Borel A., 1949, Comment. Math. Helv, V23, P200, DOI 10.1007/BF02565599
[7]  
Carter RW., 1985, PURE APPL MATH
[8]  
Chriss N., 2010, REPRESENTATION THEOR
[9]  
CIUBOTARU D, ARXIV09013918V1MATHR
[10]   POLAR REPRESENTATIONS [J].
DADOK, J ;
KAC, V .
JOURNAL OF ALGEBRA, 1985, 92 (02) :504-524