Computer simulation of polypropylene/organoclay nanocomposites: characterization of atomic scale structure and prediction of binding energy

被引:106
作者
Toth, R
Coslanich, A
Ferrone, M
Fermeglia, M
Pricl, S
Miertus, S
Chiellini, E
机构
[1] Univ Pisa, Dept Chem Engn & Ind Chem, I-56126 Pisa, Italy
[2] Univ Trieste, Dept Chem Engn, Comp Aided Syst Lab, I-34127 Trieste, Italy
[3] UNIDO, ICS, Int Ctr Sci & High Technol, I-34012 Trieste, Italy
关键词
polypropylene/clay nanocomposites; binding energies; molecular simulations;
D O I
10.1016/j.polymer.2004.09.025
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Molecular simulation techniques are used to explore and characterize the atomic scale structure, and to predict binding energies and basal spacing of polymer/clay nanocomposites based on polypropylene (PP) and maleated polypropylene (PPMA), montmorillonite (MMT), and different alkylammonium ions (quats) as surfactants. Our evidences suggest that shorter hydrocarbonic chains are more effective in producing favorable binding energies with respect to longer ones, and the substitutions of hydrogen atoms with polar groups on the quaternary ammonium salt (quat) generally results in greater interaction between quat and both polymer and clay. Under the hypothesis, that montmorillonite platelets are uniformly dispersed in a polymer matrix, the modified polypropylene yields higher interfacial strength with clay than neat polypropylene. The use of neat PP and quats with higher molecular volume offer the higher values of the basal spacing and thus, in principle, they should be more effective in the exfoliation process. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8075 / 8083
页数:9
相关论文
共 36 条
[1]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[2]   ZIEGLER-NATTA CATALYSIS - A THEORETICAL-STUDY OF THE ISOTACTIC POLYMERIZATION OF PROPYLENE [J].
CASTONGUAY, LA ;
RAPPE, AK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (14) :5832-5842
[3]   Nylon 6 nanocomposites by melt compounding [J].
Cho, JW ;
Paul, DR .
POLYMER, 2001, 42 (03) :1083-1094
[4]   COMPUTATION OF MOLECULAR VOLUME [J].
CONNOLLY, ML .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (05) :1118-1124
[5]   ANALYTICAL MOLECULAR-SURFACE CALCULATION [J].
CONNOLLY, ML .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1983, 16 (OCT) :548-558
[6]   SOLVENT-ACCESSIBLE SURFACES OF PROTEINS AND NUCLEIC-ACIDS [J].
CONNOLLY, ML .
SCIENCE, 1983, 221 (4612) :709-713
[7]   AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES [J].
DELLEY, B .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) :508-517
[8]   A novel approach to thermophysical properties prediction for chloro-fluoro-hydrocarbons [J].
Fermeglia, M ;
Pricl, S .
FLUID PHASE EQUILIBRIA, 1999, 166 (01) :21-37
[9]   Estimation of the binding energy in random poly(butylene terephtalate-co-thiodiethylene terephtalate) copolyesters/clay nanocomposites via molecular simulation [J].
Fermeglia, M ;
Ferrone, M ;
Pricl, S .
MOLECULAR SIMULATION, 2004, 30 (05) :289-300
[10]   Computer simulation of nylon-6/organoclay nanocomposites: prediction of the binding energy [J].
Fermeglia, M ;
Ferrone, M ;
Pricl, S .
FLUID PHASE EQUILIBRIA, 2003, 212 (1-2) :315-329