Limit Cycles Bifurcating from a Class of Cubic Hamiltonian Systems

被引:0
|
作者
Chen, Yuanyuan [2 ]
Yu, Jiang [1 ]
机构
[1] Shanghai Jiao Tong Univ, CMA Shanghai, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Zhongyuan Univ Technol, Coll Sci, Zhengzhou 450000, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2022年 / 32卷 / 06期
关键词
Near-Hamiltonian system; Abelian integral; limit cycle; DEGREE-4; PERTURBATIONS;
D O I
10.1142/S0218127422500882
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the perturbation of a class of cubic Hamiltonian systems is considered. Using Abelian integral, we prove that there exists a neighborhood of the center where the system has at most two limit cycles for arbitrary polynomial perturbation of degree three or four, and at most four limit cycles for arbitrary polynomial perturbation of degree five or six, respectively, which can be reached.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] The maximal number of limit cycles bifurcating from a Hamiltonian triangle in quadratic systems
    Xiong, Yanqin
    Han, Maoan
    Xiao, Dongmei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 280 : 139 - 178
  • [2] The Number of Limit Cycles Bifurcating from an Elementary Centre of Hamiltonian Differential Systems
    Wei, Lijun
    Tian, Yun
    Xu, Yancong
    MATHEMATICS, 2022, 10 (09)
  • [3] On the Limit Cycles Bifurcating from the Periodic Orbits of a Hamiltonian System
    Anacona, Gerardo H.
    Llibre, Jaume
    Freitas, Bruno
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025, 35 (04):
  • [4] Limit Cycles Bifurcating from an Invisible Fold–Fold in Planar Piecewise Hamiltonian Systems
    Denis de Carvalho Braga
    Alexander Fernandes da Fonseca
    Luiz Fernando Gonçalves
    Luis Fernando Mello
    Journal of Dynamical and Control Systems, 2021, 27 : 179 - 204
  • [5] MAXIMUM NUMBER OF LIMIT CYCLES BIFURCATING FROM THE PERIOD ANNULUS OF CUBIC POLYNOMIAL SYSTEMS
    Shi, Hongwei
    Bai, Yuzhen
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (01) : 177 - 187
  • [6] Limit Cycles Bifurcating from an Invisible Fold-Fold in Planar Piecewise Hamiltonian Systems
    de Carvalho Braga, Denis
    Fernandes da Fonseca, Alexander
    Goncalves, Luiz Fernando
    Mello, Luis Fernando
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2021, 27 (01) : 179 - 204
  • [7] Bound the number of limit cycles bifurcating from center of polynomial Hamiltonian system via interval analysis
    Wang, Jihua
    CHAOS SOLITONS & FRACTALS, 2016, 87 : 30 - 38
  • [8] Limit Cycles of a Class of Polynomial Differential Systems Bifurcating from the Periodic Orbits of a Linear Center
    Menaceur, Amor
    Boulaaras, Salah
    Alkhalaf, Salem
    Jain, Shilpi
    SYMMETRY-BASEL, 2020, 12 (08): : 1 - 15
  • [9] LIMIT CYCLES BIFURCATING FROM THE PERIODIC ANNULUS OF CUBIC HOMOGENEOUS POLYNOMIAL CENTERS
    Llibre, Jaume
    Lopes, Bruno D.
    de Moraes, Jaime R.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [10] On the Number of Limit Cycles Bifurcating from the Linear Center with a Cubic Switching Curve
    Ranran Jia
    Liqin Zhao
    Qualitative Theory of Dynamical Systems, 2024, 23