A Dual Global-Local Attention Network for Hyperspectral Band Selection

被引:49
作者
He, Ke [1 ]
Sun, Weiwei [1 ]
Yang, Gang [1 ]
Meng, Xiangchao [2 ]
Ren, Kai [1 ]
Peng, Jiangtao [3 ]
Du, Qian [4 ]
机构
[1] Ningbo Univ, Dept Geog & Spatial Informat Tech, Ningbo 315211, Peoples R China
[2] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo 315211, Peoples R China
[3] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
[4] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Deep learning; Indexes; Correlation; Training; Hyperspectral imaging; Convolution; Band selection (BS); global-local attention; hyperspectral image (HSI); spatial-spectral features; CLASSIFICATION; IMAGES;
D O I
10.1109/TGRS.2022.3169018
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This article proposes a dual global-local attention network (DGLAnet), which is an end-to-end unsupervised band selection (UBS) method that fully utilizes spatial and spectral information in both global and local aspects. The DGLAnet assumes that BS can be realized using the hyperspectral image (HSI) reconstruction process. First, the DGLAnet implements a dual attention module to obtain spatial-spectral and global-local features to reweight the HSI data. It adopts bi-directional relations to grasp spatial and spectral features from a global perspective. Meanwhile, the DGLAnet extracts local features through max-pooling and mean-pooling and then merges them via the convolution operation. Global-local features are utilized to learn attention to recalibrate the original data, and the reconstruction module is adopted to restore the original image from the reweighted HSI data. Finally, a proper band subset is selected by the constructed band evaluation index. Experiments on three hyperspectral data show that the DGLAnet outperforms other state-of-the-art methods and uses all bands with a lower computational cost.
引用
收藏
页数:13
相关论文
共 62 条
  • [1] Feature selection and classification of hyperspectral images, with support vector machines
    Archibald, Rick
    Fann, George
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (04) : 674 - 677
  • [2] Deep Learning for Classification of Hyperspectral Data
    Audebert, Nicolas
    Le Saux, Bertrand
    Lefevre, Sebastien
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2019, 7 (02) : 159 - 173
  • [3] Bengio Yoshua, 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P437, DOI 10.1007/978-3-642-35289-8_26
  • [4] Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality
    Brando, VE
    Dekker, AG
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (06): : 1378 - 1387
  • [5] Hydrothermal formation of Clay-Carbonate alteration assemblages in the Nil Fossae region of Mars
    Brown, Adrian J.
    Hook, Simon J.
    Baldridge, Alice M.
    Crowley, James K.
    Bridges, Nathan T.
    Thomson, Bradley J.
    Marion, Giles M.
    de Souza Filho, Carlos R.
    Bishop, Janice L.
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 2010, 297 (1-2) : 174 - 182
  • [6] Hyperspectral imaging spectroscopy of a Mars analogue environment at the North Pole Dome, Pilbara Craton, Western Australia
    Brown, AJ
    Walter, MR
    Cudahy, TJ
    [J]. AUSTRALIAN JOURNAL OF EARTH SCIENCES, 2005, 52 (03) : 353 - 364
  • [7] BS-Nets: An End-to-End Framework for Band Selection of Hyperspectral Image
    Cai, Yaoming
    Liu, Xiaobo
    Cai, Zhihua
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03): : 1969 - 1984
  • [8] Utilizing HyspIRI Prototype Data for Geological Exploration Applications: A Southern California Case Study
    Calvin, Wendy M.
    Pace, Elizabeth L.
    [J]. GEOSCIENCES, 2016, 6 (01)
  • [9] Supervised Band Selection Using Local Spatial Information for Hyperspectral Image
    Cao, Xianghai
    Xiong, Tao
    Jiao, Licheng
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) : 329 - 333
  • [10] MIMN-DPP: Maximum-information and minimum-noise determinantal point processes for unsupervised hyperspectral band selection
    Chen, Weizhao
    Yang, Zhijing
    Ren, Jinchang
    Cao, Jiangzhong
    Cai, Nian
    Zhao, Huimin
    Yuen, Peter
    [J]. PATTERN RECOGNITION, 2020, 102