Physiological Role of Two-Component Signal Transduction Systems in Food-Associated Lactic Acid Bacteria

被引:30
|
作者
Monedero, Vicente [1 ]
Revilla-Guarinos, Ainhoa [2 ]
Zuniga, Manuel [1 ]
机构
[1] Inst Agroquim & Tecnol Alimentos CSIC, Paterna, Spain
[2] Tech Univ Dresden, Dresden, Germany
来源
ADVANCES IN APPLIED MICROBIOLOGY, VOL 99 | 2017年 / 99卷
关键词
COCULTURE-INDUCIBLE BACTERIOCIN; LACTOBACILLUS-PLANTARUM C-11; SENSING HISTIDINE KINASES; CELL-WALL METABOLISM; LACTOCOCCUS-LACTIS; REGULATORY SYSTEMS; GENE-EXPRESSION; ANTIMICROBIAL PEPTIDES; RESPONSE REGULATORS; MALIC ENZYME;
D O I
10.1016/bs.aambs.2016.12.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Two-component systems (TCSs) are widespread signal transduction pathways mainly found in bacteria where they play a major role in adaptation to changing environmental conditions. TCSs generally consist of sensor histidine kinases that autophosphorylate in response to a specific stimulus and subsequently transfer the phosphate group to their cognate response regulators thus modulating their activity, usually as transcriptional regulators. In this review we present the current knowledge on the physiological role of TCSs in species of the families Lactobacillaceae and Leuconostocaceae of the group of lactic acid bacteria (LAB). LAB are microorganisms of great relevance for health and food production as the group spans from starter organisms to pathogens. Whereas the role of TCSs in pathogenic LAB (most of them belonging to the family Streptococcaceae) has focused the attention, the roles of TCSs in commensal LAB, such as most species of Lactobacillaceae and Leuconostocaceae, have been somewhat neglected. However, evidence available indicates that TCSs are key players in the regulation of the physiology of these bacteria. The first studies in food-associated LAB showed the involvement of some TCSs in quorum sensing and production of bacteriocins, but subsequent studies have shown that TCSs participate in other physiological processes, such as stress response, regulation of nitrogen metabolism, regulation of malate metabolism, and resistance to antimicrobial peptides, among others.
引用
收藏
页码:1 / 51
页数:51
相关论文
共 50 条
  • [1] Two-component signal transduction systems in oral bacteria
    Mattos-Graner, Renata O.
    Duncan, Margaret J.
    JOURNAL OF ORAL MICROBIOLOGY, 2017, 9
  • [2] Evolution of Two-Component Signal Transduction Systems
    Capra, Emily J.
    Laub, Michael T.
    ANNUAL REVIEW OF MICROBIOLOGY, VOL 66, 2012, 66 : 325 - 347
  • [3] Two-component systems in plant signal transduction
    Urao, T
    Yamaguchi-Shinozaki, K
    Shinozaki, K
    TRENDS IN PLANT SCIENCE, 2000, 5 (02) : 67 - 74
  • [4] The mechanism of signal transduction by two-component systems
    Casino, Patricia
    Rubio, Vicente
    Marina, Alberto
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2010, 20 (06) : 763 - 771
  • [5] Transmembrane signal transduction in two-component systems
    Gushchin, I
    Gordeliy, V
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2018, 50 (06) : 505 - 505
  • [6] An intimate link: two-component signal transduction systems and metal transport systems in bacteria
    Singh, Kamna
    Senadheera, Dilani B.
    Cvitkovitch, Dennis G.
    FUTURE MICROBIOLOGY, 2014, 9 (11) : 1283 - 1293
  • [7] Two-component signal transduction
    Bourret, Robert B.
    Silversmith, Ruth E.
    CURRENT OPINION IN MICROBIOLOGY, 2010, 13 (02) : 113 - 115
  • [8] Two-component signal transduction
    Stock, AM
    Robinson, VL
    Goudreau, PN
    ANNUAL REVIEW OF BIOCHEMISTRY, 2000, 69 : 183 - 215
  • [9] Two-component signal transduction systems in eukaryotic microorganisms
    Loomis, WF
    Kuspa, A
    Shaulsky, G
    CURRENT OPINION IN MICROBIOLOGY, 1998, 1 (06) : 643 - 648
  • [10] Rewiring the specificity of two-component signal transduction systems
    Skerker, Jeffrey M.
    Perchuk, Barrett S.
    Siryaporn, Albert
    Lubin, Emma A.
    Ashenberg, Orr
    Goulian, Mark
    Laub, Michael T.
    CELL, 2008, 133 (06) : 1043 - 1054