Reduced graphene oxide supported nitrogen-doped porous carbon-coated NiFe alloy composite with excellent electrocatalytic activity for oxygen evolution reaction

被引:41
作者
Yue, Xiaoyang [1 ]
Song, Chunsen [1 ]
Yan, Zhenyu [1 ]
Shen, Xiaoping [1 ]
Ke, Wentao [1 ]
Ji, Zhenyuan [1 ]
Zhu, Guoxing [1 ]
Yuan, Aihua [2 ]
Zhu, Jun [1 ]
Li, Baolong [3 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Environm & Chem Engn, Zhenjiang 212003, Jiangsu, Peoples R China
[3] Soochow Univ, Coll Chem Chem Engn & Mat Sci, State & Local Joint Engn Lab Funct Polymer Mat, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
NiFe alloy; N-doping porous carbon; Graphene; Electrocatalyst; Oxygen evolution reaction; METAL-ORGANIC FRAMEWORKS; HYDROGEN EVOLUTION; EFFICIENT ELECTROCATALYSTS; GRAPHITIC CARBON; NANOPARTICLES; REDUCTION; PERFORMANCE; HYDROXIDE; NANOSHEETS; NANOCUBES;
D O I
10.1016/j.apsusc.2019.07.083
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Designing of cost-effective electrocatalysts for efficient oxygen evolution reaction (OER) is highly desired for the practical production of clean hydrogen energy. Herein, reduced graphene oxide (RGO) supported N-doped porous carbon-coated NiFe alloy composite (NiFe@NC/RGO) was synthesized via a facile pyrolysis route. The introduction of RGO effectively protects the active NiFe component from agglomeration and largely promotes charge transfer. Meanwhile, the formation of porous N-doped carbon shell provides sufficient contact between active species and electrolyte, thus exposing plenty of accessible active sites. Specifically, the optimized NiFe@ NC/RGO composite shows superior electrocatalytic performance, delivering an overpotential as low as 223 mV at current density of 10 mA cm(-2), and a small Tafel slope of 48.7 mV dec(-1) in 1 M KOH solution, which outperforms commercial precious metal oxide catalysts such as RuO2 and a vast majority of electrocatalysts reported so far. Long-term cycling test demonstrates that the overpotential at current density of 10 mA cm(-2) has almost no change after 1000 cycles at a scan rate of 50 mV s(-1), indicating its quite good stability. The low-cost and high-performance electrocatalyst developed in this work shows great potential for practical hydrogen production from electrolysis of water.
引用
收藏
页码:963 / 974
页数:12
相关论文
共 62 条
[1]   Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces [J].
Anantharaj, Sengeni ;
Karthick, Kannimuthu ;
Venkatesh, Murugadoss ;
Simha, Tangella V. S. V. ;
Salunke, Ashish S. ;
Ma, Lian ;
Liang, Hong ;
Kundu, Subrata .
NANO ENERGY, 2017, 39 :30-43
[2]  
[Anonymous], ADV MAT
[3]   The future of energy supply: Challenges and opportunities [J].
Armaroli, Nicola ;
Balzani, Vincenzo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (1-2) :52-66
[4]   IrO2 Coated on RuO2 as Efficient and Stable Electroactive Nanocatalysts for Electrochemical Water Splitting [J].
Audichon, Thomas ;
Napporn, Teko W. ;
Canaff, Christine ;
Morais, Claudia ;
Comminges, Clement ;
Kokoh, K. Boniface .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (05) :2562-2573
[5]   In situ Growth of NixCo100-x Nanoparticles on Reduced Graphene Oxide Nanosheets and Their Magnetic and Catalytic Properties [J].
Bai, Song ;
Shen, Xiaoping ;
Zhu, Guoxing ;
Li, Minzhi ;
Xi, Haitao ;
Chen, Kangmin .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (05) :2378-2386
[6]   In situ integration of CoFe alloy nanoparticles with nitrogen-doped carbon nanotubes as advanced bifunctional cathode catalysts for Zn-air batteries [J].
Cai, Pingwei ;
Hong, Yuan ;
Ci, Suqin ;
Wen, Zhenhai .
NANOSCALE, 2016, 8 (48) :20048-20055
[7]  
Charlier JC, 2008, TOP APPL PHYS, V111, P673, DOI 10.1007/978-3-540-72865-8_21
[8]   Efficient and Stable Bifunctional Electrocatalysts Ni/NixMy (M = P, S) for Overall Water Splitting [J].
Chen, Gao-Feng ;
Ma, Tian Yi ;
Liu, Zhao-Qing ;
Li, Nan ;
Su, Yu-Zhi ;
Davey, Kenneth ;
Qiao, Shi-Zhang .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (19) :3314-3323
[9]   Interfacial Interaction between FeOOH and Ni-Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis [J].
Chen, Jiande ;
Zheng, Feng ;
Zhang, Shao-Jian ;
Fisher, Adrian ;
Zhou, Yao ;
Wang, Zeyu ;
Li, Yuyang ;
Xu, Bin-Bin ;
Li, Jun-Tao ;
Sun, Shi-Gang .
ACS CATALYSIS, 2018, 8 (12) :11342-11351
[10]   Trimetallic Ni-Fe-Co selenides nanoparticles supported on carbon fiber cloth as efficient electrocatalyst for oxygen evolution reaction [J].
Chi, Jing-Qi ;
Yan, Kai-Li ;
Xiao, Zi ;
Dong, Bin ;
Shang, Xiao ;
Gao, Wen-Kun ;
Li, Xiao ;
Chai, Yong-Ming ;
Liu, Chen-Guang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (32) :20599-20607