Quantum gravitational correction to the Hawking temperature from the Lemaitre-Tolman-Bondi model

被引:22
作者
Banerjee, Rabin [1 ]
Kiefer, Claus [2 ]
Majhi, Bibhas Ranjan [1 ]
机构
[1] SN Bose Natl Ctr Basic Sci, Kolkata 700098, India
[2] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
来源
PHYSICAL REVIEW D | 2010年 / 82卷 / 04期
关键词
D O I
10.1103/PhysRevD.82.044013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We solve the quantum constraint equations of the Lemaitre-Tolman-Bondi model in a semiclassical approximation in which an expansion is performed with respect to the Planck length. We recover in this way the standard expression for the Hawking temperature as well as its first quantum gravitational correction. We then interpret this correction in terms of the one-loop trace anomaly of the energy-momentum tensor and thereby make contact with earlier work on quantum black holes.
引用
收藏
页数:7
相关论文
共 20 条
[1]  
BANERJEE R, 2008, PHYS LETT B, V6
[2]   Exact differential and corrected area law for stationary black holes in tunneling method [J].
Banerjee, Rabin ;
Modak, Sujoy Kumar .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (05)
[3]   Wheeler-DeWitt equation and Feynman diagrams [J].
Barvinsky, AO ;
Kiefer, C .
NUCLEAR PHYSICS B, 1998, 526 (1-3) :509-539
[4]   Quantum gravitational collapse in the Lemaitre-Tolman-Bondi model with a positive cosmological constant [J].
Franzen, Anne ;
Gutti, Sashideep ;
Kiefer, Claus .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (01)
[5]   TEMPERATURE AND ENTROPY OF A QUANTUM BLACK BORE AND CONFORMAL ANOMALY [J].
FURSAEV, DV .
PHYSICAL REVIEW D, 1995, 51 (10) :R5352-R5355
[6]  
Gradshteyn S I., 1994, Table of integrals, Series, and Products, V5th
[7]   ZETA FUNCTION REGULARIZATION OF PATH INTEGRALS IN CURVED SPACETIME [J].
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) :133-148
[8]   PARTICLE CREATION BY BLACK-HOLES [J].
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 43 (03) :199-220
[9]   QUANTUM GRAVITATIONAL CORRECTIONS TO THE FUNCTIONAL SCHRODINGER-EQUATION [J].
KIEFER, C ;
SINGH, TP .
PHYSICAL REVIEW D, 1991, 44 (04) :1067-1076
[10]   Classical and quantum Lemaitre-Tolman-Bondi model for the nonmarginal case [J].
Kiefer, C ;
Müller-Hill, J ;
Vaz, C .
PHYSICAL REVIEW D, 2006, 73 (04)